
SynthWorks

by

Jim Lewis

VHDL Training Expert at SynthWorks

IEEE 1076 Working Group Chair

OSVVM Chief Architect

Jim@SynthWorks.com

VHDL Intelligent Coverage
Using Open Source

VHDL Verification Methodology
(OSVVM)

2

SynthWorks

VHDL Intelligent Coverage Using OSVVM

Copyright © 2013 by SynthWorks Design Inc.
Reproduction of this entire document in whole for individual usage is permitted.
All other rights reserved.

In particular,without express written permission of SynthWorks Design Inc,
You may not alter, transform, or build upon this work,
You may not use any material from this guide in a group presentation,
tutorial, training, or classroom
You must include this page in any printed copy of this document.

This material is derived from SynthWorks' class, VHDL Testbenches and Verification

This material is updated from time to time and the latest copy of this is available at
http://www.SynthWorks.com/papers

Contact Information
Jim Lewis, President
SynthWorks Design Inc
11898 SW 128th Avenue
Tigard, Oregon 97223
503-590-4787
jim@SynthWorks.com

www.SynthWorks.com

3

SynthWorks

VHDL Intelligent Coverage Using OSVVM

Topics
What and Why OSVVM, Functional Coverage, Randomization?
Writing Item (Point) Coverage
Writing Cross Coverage
Constrained Random is 5X or More Slower
Intelligent Coverage
OSVVM is More Capable
Additional Randomization in OSVVM
Weighted Intelligent Coverage
Coverage Closure
Additional Pieces of Verification
Objections to VHDL
OSVVM Summary

What, Why, and How of OSVVM's Randomization and Functional Coverage

4

SynthWorks

What is OS-VVM?
Open Source VHDL Verification Methodology

Leading edge verification for your VHDL team
Works in any VHDL testbench
Mixes well with other approaches (directed, algorithmic, file, random)
Recommended to be use with transaction based testbenches
Readable by All (in particular RTL engineers)

Packages + Methodology for:
Constrained Random (CR)
Functional Coverage (FC)
Intelligent Coverage - Test generation using FC holes

Low cost solution to leading edge verification
Works with regular VHDL simulators
Packages are FREE

5

SynthWorks

What is Functional Coverage?

Test Done =
100 % Functional Coverage + 100 % Code Coverage

Code that observes execution of your test plan
Tracks requirements, features, and boundary conditions
Model interface and design requirements
Required for randomized tests.

Cross Coverage
Track relationships between multiple objects
Has the each pair of registers been used with the ALU?

Item Coverage (aka Point Coverage)
Track relationships within a single object
Bins of values, such as transfer sizes:

1, 2, 3, 4-127, 128-252, 253, 254, 255

6

SynthWorks

Why Functional Coverage?
"I have written a directed test for each item in the test plan, I am done right?"

For a small design maybe

As complexity grows and the design evolves, are you sure?
When the FIFO size quadruples, does the test still fill it?
Have you covered all possible use modes and orderings?
Did you add all required features?

To avoid missing items, use functional coverage for all tests.
Rather than assume, functional coverage observes that the test plan
points actually get exercised.

7

SynthWorks

Randomization Methodologies
Constrained Random (CR)

Generate stimulus using randomization constraints
Constraints can be equations (SystemVerilog) or code (VHDL)
SystemVerilog uses a solver to balance the randomization
Requires functional coverage to determine what was done

Intelligent Coverage
Generate stimulus by randomizing across holes in the FC model
Requires functional coverage
No top-level randomization constraints

Intelligent Coverage is less work (2X?) than Constrained Random

8

SynthWorks

Why Randomize?
Directed test of a FIFO (tracking words in FIFO):

Constrained Random test of a FIFO:

With randomization,
We can generate more realistic stimulus
Ideal for different modes, instructions, … network packets.
Sequences with different orders

9

SynthWorks

Item Coverage

Transfer Sizes Count

1
2
3
4 to 127
128 to 252
253
254
255

Relationships within a single object = Bins of values.

Methods:
Manual
Using CoveragePkg

Boundary conditions occur at smaller and larger transfer sizes

10

SynthWorks

Item Coverage: Manual
signal Bin : integer_vector(1 to 8) ;
. . .
process
begin
 wait until rising_edge(Clk) and DValid = '1' ;
 case to_integer(ActualData) is
 when 1 => Bin(1) <= Bin(1) + 1 ;
 when 2 => Bin(2) <= Bin(2) + 1 ;
 when 3 => Bin(3) <= Bin(3) + 1 ;
 when 4 to 127 => Bin(4) <= Bin(4) + 1 ;
 when 128 to 252 => Bin(5) <= Bin(5) + 1 ;
 when 253 => Bin(6) <= Bin(6) + 1 ;
 when 254 => Bin(7) <= Bin(7) + 1 ;
 when 255 => Bin(8) <= Bin(8) + 1 ;
 when others => null ;
 end case ;
end process ;

Define Bins
+
Collect
Coverage

Declare
8 Bins

Sample at
Clock

Not Rocket Science, but:
Too much work, Too specific to a problem,
No reuse, No built-in reporting

11

SynthWorks

CoveragePkg
CoveragePkg simplifies coverage definition, collection, and reporting

Protected Type: CovPType
Implements a data structure and configuration parameters (via variables)
Methods to implement all coverage features

function GenBin (. . .) return CovBinType ;

type CovPType is protected
 procedure AddBins (CovBin : CovBinType) ;

 procedure AddCross(Bin1, Bin2, ... : CovBinType) ;

 procedure ICover (val : integer) ;

 procedure ICover (val : integer_vector) ;

 impure function IsCovered return boolean ;

 procedure WriteBin ;

 procedure WriteCovHoles ;

 procedure ReadCovDb (FileName : string) ;

 procedure WriteCovDb (FileName : string; ...) ;
 . . .
end protected CovPType ;

12

SynthWorks

Item Coverage w/ CoveragePkg

Define
Bins

Declare Coverage Object
architecture Test1 of tb is
 shared variable Bin1 : CovPType ;
begin

 CollectCov : process
 begin

 Bin1.AddBins(GenBin(1, 3, 3)) ;
 Bin1.AddBins(GenBin(4, 252, 2)) ;
 Bin1.AddBins(GenBin(253, 255)) ;

 while not Bin1.IsCovered loop

 wait on Clk until Clk = '1' and DValid = '1';

 Bin1.ICover(to_integer(ActualData_uv));

 end loop ;

 Bin1.WriteBin ;

 end process ;
Report Cov

Done

Collect
Coverage at
Clock

13

SynthWorks

Define Bins: AddBins + GenBin

Function GenBin: Create array of bin inputs to AddBins

Create 3 bins with ranges: 1 to 1, 2 to 2, and 3 to 3 .
-- min, max, #bins
Bin1.AddBins(GenBin(1, 3, 3));

Method AddBins: Add item coverage bin(s) to internal data structure.

Additional calls to AddBins creates additional bins
-- min, max, #bins
Bin1.AddBins(GenBin(4, 252, 2));

Create 2 additional bins with ranges: 4 to 127, 128 to 252.

GenBin without NumBins creates one bin per value
-- min, max
Bin1.AddBins(GenBin(253, 255));

-- Bin1.AddBins(GenBin(253, 255, 3)); -- equivalent

3 additional bins with ranges: 253 to 253, 254 to 254, and 255 to 255.

14

SynthWorks

Coverage Model Data Structure

shared variable Bin1 : CovPType ;

Use a shared variable

Data structure and related settings are stored in the shared variable

CovBinPtr
Name
RV
WeightMode
WeightScale
CovThreshold
IllegalMode
CountMode

AtLeastCountMaxMin
11101 1
1110 22
111 033
11 101274
1 110252128

 1110253253
1110254254
1110255255

WeightAction

Internal Variables Internal Data Structure

Each row in the data structure is a separate bin

B
I
N
S

15

SynthWorks

Cross Coverage
Testing an ALU with Multiple Inputs:

Mux
8:1

Mux
8:1

Q0

Q7

D0

D7
...... ...

...

SRC1

SRC2

Need to test every register in SRC1 with every register in SRC2

R7
R6
R5
R4
R3
R2
R1
R0

R7R6R5R4R3R2R1R0
SRC2

S
R
C
1

Result: Matrix of conditions that must be covered

16

SynthWorks

Cross Coverage

Functional Coverage with OSVVM
is as concise as language syntax.

Uniform
Randomization

Covered = Done

Create Cross
Coverage Bins

Collect Coverage
at Transaction

Do Transaction

architecture Test3 of tb is
 shared variable ACov : CovPType ;
begin

 CollectCov : process
 variable RV : RandomPType ; -- randomization object
 variable Src1, Src2 : integer ;
 begin

 ACov.AddCross(GenBin(0,7), GenBin(0,7));

 while not ACov.IsCovered loop

 Src1 := RV.RandInt(0, 7) ;

 Src2 := RV.RandInt(0, 7) ;

 DoAluOp(TRec, Src1, Src2) ;

 ACov.ICover((Src1, Src2)) ;

 end loop ;

 ACov.WriteBin ;
 EndStatus(. . .) ;
end process ;

Coverage Object

17

SynthWorks

Cross Coverage: Define Bins

ACov.AddCross(GenBin(0,7), GenBin(0,7));

One parameter per cross item. Up to 20 parameters supported.
GenBin used to construct parameter values.

Method AddCross: Add cross coverage bin(s) to internal data structure.

Data structure now has one range (min, max) pair per cross item:

Internal Data Structure

AtLeastCount
MaxMin

11100 0
1110 11
111 022
11 1033
1 11044

111066
111077

WeightAction
MaxMin

Src1 Src2

0 0
 00
00
00
00
......

77
77

B
I
N
S

18

SynthWorks

Constrained Random is 5X or More Slower

With a good solver, constrained random (CR) does uniform randomization.
Uniform distributions repeat before generating all cases
In general, to generate N cases, it takes O(N*log N) randomizations

"From Volume to Velocity" shows CR tests that are 10X to 100X too slow

The uniform randomization in ALU test requires 315 test iterations.
315 is approximately 5X too many iterations (64 test cases)
The "log N" factor significantly slows down constrained random tests.

R7
R6
R5
R4
R3
R2
R1
R0

R7R6R5R4R3R2R1R0
SRC2

S
R
C
1

5664 1966
45596343
643235 14
64433655
7710910554
83536364
64 174363
54566437

19

SynthWorks

Intelligent Coverage

Randomly select holes in Functional Coverage Model
"Coverage driven randomization" - but term is misused by others

Goal: Generate N Unique Test Cases in N Randomizations
Same goal of Intelligent Testbenches

R7

R6
R5

R4

R3
R2

R1
R0

R7R6R5R4R3R2R1R0

SRC2

S
R
C
1

1111 1111

11111111

11111111

11111111

11111111

11111111

11 111111

11111111

20

SynthWorks

Intelligent Coverage

Runs 64 iterations
@ 5X faster

architecture Test3 of tb is
 shared variable ACov : CovPType ; -- Cov Object
begin

 CollectCov : process
 variable Src1, Src2 : integer ;
 begin

 ACov.AddCross(GenBin(0,7), GenBin(0,7));

 while not ACov.IsCovered loop

 (Src1, Src2) := ACov.RandCovPoint ;

 DoAluOp(TRec, Src1, Src2) ;

 ACov.ICover((Src1, Src2)) ;

 end loop ;

 ACov.WriteBin ; -- Report Coverage
 EndStatus(. . .) ;
end process ;

Same test using Intelligent Coverage

Intelligent Coverage
Randomization

21

SynthWorks

Refinement of Intelligent Coverage

 while not ACov.IsCovered loop

 (Reg1, Reg2) := ACov.RandCovPoint ;

 if Reg1 /= Reg2 then
 DoAluOp(TRec, Reg1, Reg2) ;
 ACov.ICover((Reg1, Reg2)) ;

 else
 -- Do previous and following diagional
 DoAluOp(TRec, (Reg1-1) mod 8, (Reg2-1) mod 8) ;
 DoAluOp(TRec, Reg1, Reg2) ;
 DoAluOp(TRec, (Reg1+1) mod 8, (Reg2+1) mod 8) ;

 -- Can either record all or select items
 ACov.ICover((Reg1, Reg2)) ;
 end if ;

 end loop ;

Refinement can be as simple or complex as needed

Use either directed, algorithmic, file-based or randomization methods.

22

SynthWorks

OSVVM is More Capable
Functional Coverage is a data structure

Modeled using any sequential construct (loop, if, case, …)
Incremental additions supported
Use generics to make coverage conditional on test parameters

TestProc : process
begin
 for i in 0 to 7 loop
 for j in 0 to 7 loop
 if i /= j then
 -- non-diagonal
 ACov.AddCross(2, GenBin(i), GenBin(j));
 else
 -- diagonal
 ACov.AddCross(4, GenBin(i), GenBin(j));
 end if ;
 ...

23

SynthWorks

Additional Randomization in OSVVM

Data1 := RV.RandInt(Min => 0, Max => 15) ;
Data2 := RV.RandInt(0, 15, (5,11)); -- except 5 & 11

Data3 := RV.RandInt((1,2,3,5,7,11));
Data4 := RV.RandInt((1,2,3,5,7,11), (5,11));

Randomize a value within the set (1, 2, 3, 5, 7, 11), except 5 & 11

Randomize a value in an inclusive range, 0 to 15, except 5 & 11

Implemented in RandomPkg

. . . -- ((val1, wt1), (val2, wt2), ...)
Data5 := RV.DistValInt(((1,7), (3,2), (5, 1)));

Weighted Randomization: Value + Weight

Data6 := RV.DistInt ((7, 2, 1)) ;

Weighted Randomization: Weight, Value = 0 .. N-1

24

SynthWorks

Additional Randomization in OSVVM
Code patterns create constraints for CR tests,

 Example: Weighted selection of test sequences (CR)

In OSVVM, Intelligent Coverage is the primary randomization,
Code patterns are used primarily for refinement.
Usage of CR alone is O(logN) slower

StimGen : while TestActive loop

 case RV.DistInt((7, 2, 1)) is -- Select sequence

 when 0 => -- Normal Handling -- 70%
 . . .

 when 1 => -- Error Case 1 -- 20%
 . . .

 when 2 => -- Error Case 2 -- 10%
 . . .

25

SynthWorks

Weighted Intelligent Coverage
Each coverage bin can have a different coverage goal

Goal = Number of times of value must occur to be covered

Weighted selection of test sequences (Intelligent Coverage):

Bin1.AddBins(70, GenBin(0)) ; -- Normal Handling, 70%
Bin1.AddBins(20, GenBin(1)) ; -- Error Case 1, 20%
Bin1.AddBins(10, GenBin(2)) ; -- Error Case 2, 10%

StimGen : while not Bin1.IsCovered loop
 iSequence := Bin1.RandCovPoint ;
 case iSequence is

 when 0 => -- Normal Handling -- 70%
 . . .

 when 1 => -- Error Case 1 -- 20%
 . . .

 when 2 => -- Error Case 2 -- 10%
 . . .

Generates the exact
distribution

Set Coverage Goals

Select sequence

26

SynthWorks

Coverage Closure
Closure = Cover all legal bins in the coverage model

Intelligent coverage
Focus on FC. Only selects bins that are not covered
Just need a mapping from selected coverage to an input sequence
In complex cases may require more than one transaction
Tests partitioned based on what coverage we want in this test.

Constrained Random
Requires CR to accurately drive the inputs to the FC
Closure is more challenging
After simulation, analyze FC
Prune out tests that are not increasing FC
Tests partitioned based on modified constraint sets and seeds
Must merge FC database for all tests

27

SynthWorks

Additional Pieces of Verification

Packages for above +
Synchronization - synchronize concurrent processes
Reporting

Memory Modeling
Large memories need space saving algorithm + Easy access

Scoreboards

DUT
Output
Monitor

Scoreboard

Stimulus
Generator

T

TLM = Abstract Initiation + Transaction Models (entity/architecture)

CpuWrite(CpuRec, ADDR0, X"A5A5");
CpuRead (CpuRec, ADDR0, DataO);

28

SynthWorks

Objections to VHDL

No Solver
Intelligent coverage is balanced and O(logN) faster than the best solver

No OO
Functional Coverage requires data structures not OO
TLM / BFMs are easier to implement using an entity + architecture

No Factory Class
Factory classes allow swapping of implementations in OO programming
Architectures give the same capability for concurrent programming

No Fork & Join
Fork & Join are for sequential programming - writing threads.
VHDL is already a concurrent language

Use entity + architecture for bundling
Use separate processes for independent handling of sequences
Use handshaking (like hardware) to coordinate separate activities
Just like RTL

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days

http://www.synthworks.com/comprehensive_vhdl_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

VHDL Coding for Synthesis 4 Days
 http://www.synthworks.com/vhdl_rtl_synthesis.htm
 Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design

techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

SynthWorks offers on-site, public venue, and on-line classes. See:
http://www.synthworks.com/public_vhdl_courses.htm

VHDL Testbenches and Verification 5 days - OSVVM bootcamp
 http://www.synthworks.com/vhdl_testbench_verification.htm

Learn the latest VHDL verification techniques including transaction-
based testing, bus functional modeling, self-checking, data structures
(linked-lists, scoreboards, memories), directed, algorithmic, constrained
random and coverage driven random testing, and functional coverage.

30

SynthWorks

OSVVM Summary
Intelligent Coverage = Simple, Powerful, Concise Methodology

Define Functional Coverage
Randomize across coverage holes
Refine with directed, algorithmic, file-based or CR methods

Faster
Test construction: Focus on FC, hence, less work (approx 1/2)
Simulations: No redundant stimulus (LogN faster) and No solver

OSVVM
Goes beyond other verification languages (SV and 'e')
Is language accessible. Add code to refine.
Works in any VHDL environment – including TLM
Readable by All (Verification and RTL engineers)

SystemVerilog?
Less powerful, alienates RTL engineers, requires a specialist

31

SynthWorks

Going Further / References

"From Volume to Velocity" by Walden Rhines of Mentor Graphics,
Keynote speech for DVCon 2011.

See http://www.mentor.com/company/industry_keynotes/

Jim's OSVVM Blog: www.synthworks.com/blog/osvvm

OSVVM Website: www.osvvm.org

Coverage Package Users Guide and Random Package Users Guide

Getting the packages:
Maybe already installed in your simulator's osvvm library
http://www.osvvm.org/downloads
http://www.synthworks.com/downloads

This page is intentionally left blank

