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● IEEE 1076.3 (numeric_std) and IEEE 1164 (std_logic_1164).
● Logic reduction operators
● Array / scalar logic operators
● Array / scalar addition operators
● TO_X01, IS_X for unsigned and signed
● Shift operators for std_logic_vector and std_ulogic_vector
● Unsigned arithmetic for std_logic_vector & std_ulogic_vector
● TextIO for std_logic_1164 and numeric_std
● Floating point arithmetic

● Review of strong typing, overloading, type conversions

Enhancements to VHDL's Packages

Caution:
Work in progress.  Some items presented may change
Caution:
Work in progress.  Some items presented may change
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● For std_logic_vector, std_ulogic_vector, unsigned and signed.

Logic Reduction Operators

function and_reduce(arg : std_logic_vector) return std_ulogic;
function and(arg : std_logic_vector) return std_ulogic;
function and_reduce(arg : std_logic_vector) return std_ulogic;
function and(arg : std_logic_vector) return std_ulogic;

● Possible forms (being coordinated with VHDL-200X*):

● Calculating Parity with reduction operators:

Parity <= xor Data ;Parity <= xor Data ;

● Calculating Parity without reduction operators:

Parity <= Data(7) xor Data(6) xor Data(5) xor Data(4)
          Data(3) xor Data(2) xor Data(1) xor Data(0) ;
Parity <= Data(7) xor Data(6) xor Data(5) xor Data(4)
          Data(3) xor Data(2) xor Data(1) xor Data(0) ;

● *VHDL-200X may fasttrack overloading unary logic operators.

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc.  All Rights Reserved.  DVCon 2003  P4

Array / Scalar Logic Operators
● Proposal:  Create symmetric overloading for bit_vector*,

std_logic_vector, std_ulogic_vector, unsigned, and signed

function "and"( l : std_logic_vector; r : std_ulogic ) 
    return std_logic_vector;
function "and"( l : std_ulogic; r : std_logic_vector ) 
    return std_logic_vector;

function "and"( l : std_logic_vector; r : std_ulogic ) 
    return std_logic_vector;
function "and"( l : std_ulogic; r : std_logic_vector ) 
    return std_logic_vector;

● * Proposed as a VHDL-200X activity

signal ASel, BSel, CSel, DSel : std_logic ;
signal Y, A, B, C, D : std_logic_vector(3 downto 0) ;
. . .
Y <= (A and ASel) or (B and BSel) or 
     (C and CSel) or (D and DSel) ;

signal ASel, BSel, CSel, DSel : std_logic ;
signal Y, A, B, C, D : std_logic_vector(3 downto 0) ;
. . .
Y <= (A and ASel) or (B and BSel) or 
     (C and CSel) or (D and DSel) ;

● Application
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Array / Scalar Logic Operators
● What is the hardware implication of the following:

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ; 

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ; 

A(0)

A(1)

A(3)

ASel

T(0)

T(1)

T(3)

...

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"
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Array / Scalar Addition Operators
● Mix an array with a scalar for unsigned and signed addition.

function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;
function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;

signal Cin : std_logic ;
signal A, B : unsigned(7 downto 0) ;
signal Y : unsigned(8 downto 0) ;
. . .
Y <= A + B + Cin ;

signal Cin : std_logic ;
signal A, B : unsigned(7 downto 0) ;
signal Y : unsigned(8 downto 0) ;
. . .
Y <= A + B + Cin ;

The value of Cin will be expanded to be
"0" & Cin and typed appropriately:

When Cin = '0', value expands to "0000"
When Cin = '1', value expands to "0001"

The value of Cin will be expanded to be
"0" & Cin and typed appropriately:

When Cin = '0', value expands to "0000"
When Cin = '1', value expands to "0001"
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TO_X01, TO_X01Z, TO_UX01,
and IS_X
● For types unsigned and signed

function To_X01 ( s : unsigned ) return unsigned;
function Is_X ( s : unsigned ) return boolean;
function To_X01 ( s : unsigned ) return unsigned;
function Is_X ( s : unsigned ) return boolean;

● Motivation:  consistency with std_logic_1164
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Shift Operators
● For std_logic_vector and std_ulogic_vector

function "sll" ( l : std_logic_vector; r : integer )
    return std_logic_vector;

function "sll" ( l : std_ulogic_vector; r : integer )
    return std_ulogic_vector;

function "sll" ( l : std_logic_vector; r : integer )
    return std_logic_vector;

function "sll" ( l : std_ulogic_vector; r : integer )
    return std_ulogic_vector;
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Unsigned Arithmetic for
std_logic_vector & std_ulogic_vector

● Rationale:  Testbench code

constant CHIP1_RAM_BASE : std_logic_vector(31 downto 0) 
    := X"40000000" ;
constant ZERO_DATA : std_logic_vector(31 downto 0) 
    := (others => '0') ;
. . .
for i in 0 to 31 loop

  CpuWrite(CpuRec,  CHIP1_RAM_BASE + i , ZERO_DATA + 2**i  ); 

end loop ;

constant CHIP1_RAM_BASE : std_logic_vector(31 downto 0) 
    := X"40000000" ;
constant ZERO_DATA : std_logic_vector(31 downto 0) 
    := (others => '0') ;
. . .
for i in 0 to 31 loop

  CpuWrite(CpuRec,  CHIP1_RAM_BASE + i , ZERO_DATA + 2**i  ); 

end loop ;

● Note:  requires minor VHDL LRM update to make this
"LRM-legal".  VHDL ISAC is currently working on this.

● Add new package named  ?numeric_std_unsigned?

CHIP1_RAM_BASE + i , ZERO_DATA + 2**i

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc.  All Rights Reserved.  DVCon 2003  P10

TextIO
● IEEE 1076.3 (numeric_std) and IEEE 1164 (std_logic_1164).

● Synopsys has donated the package std_logic_textio, which
is planned to be updated in a compatible fashion to become
the standard.

To_string(now, right, 12)To_string(now, right, 12)

● Additional functionality:  Overloaded String functions

write(Output, "%%%ERROR data value miscompare." & LF &
    "  Actual data value = " & to_hstring(Data) & LF &
    "  Expected data value = " & to_hstring(ExpData) & LF &
    "  at time: " to_string(now, right, 12) ) ;

write(Output, "%%%ERROR data value miscompare." & LF &
    "  Actual data value = " & to_hstring(Data) & LF &
    "  Expected data value = " & to_hstring(ExpData) & LF &
    "  at time: " to_string(now, right, 12) ) ;

● Usage (with VHDL's built-in write):
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Floating Point
● Addition of a family of packages
● See David Bishop's paper later in the conference for details.

● Session 6.2

SynthWorks
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Review
● Strong Typing
● Overloading
● Ambiguous Expressions
● Type Conversions
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Strong Typing

Operation Size of Expression

Y <= A ; A'Length

Operation Size of Expression

Y <= A ; A'Length

●● Size and type of targetSize and type of target (left) = size and type of expression (right)

Y <= A and B ; A'Length = B'Length

W <= A > B ; Boolean

Y <= A + B ; Maximum (A'Length, B'Length)

V <= A * B ; A'Length + B'Length

signal A8, B8, Result8 : std_logic_vector(7 downto 0) ;
signal Result9  : std_logic_vector(8 downto 0) ;
signal Result7  : std_logic_vector(6 downto 0) ;
. . .

Result8 <= A8 + B8 ;

signal A8, B8, Result8 : std_logic_vector(7 downto 0) ;
signal Result9  : std_logic_vector(8 downto 0) ;
signal Result7  : std_logic_vector(6 downto 0) ;
. . .

Result8 <= A8 + B8 ;

● Strong typing is like an assertion check for expressions:

Explicit check for correct
sized expressions
Explicit check for correct
sized expressions

Result9 <= ('0' & A8) + ('0' & B8) ;

Result7 <= A8(6 downto 0) + B8(6 downto 0) ;

Y <= A + 10 ; A'Length
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Overloading
Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array =  std_ulogic_vector, std_logic_vector, bit_vector
         unsigned, signed,

TypeA =  boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array =  std_ulogic_vector, std_logic_vector, bit_vector
         unsigned, signed,

TypeA =  boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Numeric Array Array Array*
Array Integer Array*
Integer Array Array*

Logic, Addition Array Std_ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std_ulogic

* for comparison operators the result is boolean
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Ambiguous Expressions

Z_sv <=  A_sv  + "1010" ;Z_sv <=  A_sv  + "1010" ;

● The following expression is ambiguousambiguous and an errorerror:

● How do we solve this problem?

● An expression / statement is ambiguous if more than one operator
symbol or subprogram can match its arguments.

● Issues typically only arise when using literals.

●● Std_Logic_ArithStd_Logic_Arith defines the following two functions:

function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: UNSIGNED) return SIGNED;
function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: UNSIGNED) return SIGNED;

Is "1010" Signed or UnsignedIs "1010" Signed or Unsigned
"1010" =  -6 or 10
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Std_Logic_Arith:
Ambiguous Expressions

Z_sv    <=  A_sv  + signed'("1010") ;Z_sv    <=  A_sv  + signed'("1010") ;

● VHDL type qualifier (type_name'type_name') is a mechanism that specifies the type
of an operand or return value of a subprogram (or operator).

-- Z_sv <=  A_sv  + signed("1010") ;-- Z_sv <=  A_sv  + signed("1010") ;

● Leaving out the ' is an error:

Z_sv    <=  A_sv  + signed(B_slv) ;Z_sv    <=  A_sv  + signed(B_slv) ;

● Without ', it is type casting.  Use type casting for:

Z_sv    <=  A_sv  - 6 ;Z_sv    <=  A_sv - 6 ;

● Recommended solution, use integer:

Effects all numeric
operators in
std_logic_arith

Effects all numeric
operators in
std_logic_arith
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Type Conversions

● What conversion functions are needed?
● Signed & Unsigned (elements) <=> Std_Logic
● Signed & Unsigned <=> Std_Logic_Vector
● Signed & Unsigned <=> Integer
● Std_Logic_vector <=> Integer

● VHDL Built-In Conversions
● Automatic Type Conversion
● Conversion by Type Casting

● Conversion functions located in Numeric_Std

● VHDL is dependent on overloaded operators and conversions
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Automatic Type Conversion:
Unsigned, Signed   <=> Std_Logic

● Two types convert automatically when both are subtypes of the same type.

● Elements of Signed, Unsigned, and std_logic_vector = std_logic
● Elements of these types convert automatically to std_ulogic or std_logic

A_sl <= J_uv(0) ;A_sl <= J_uv(0) ;LegalLegal
AssignmentsAssignments B_sul <= K_sv(7) ;

L_uv(0) <= C_sl ;
M_slv(2) <= N_sv(2) ;

● Converting between std_ulogic and std_logic is automatic

subtype std_logic is resolved std_ulogic ;subtype std_logic is resolved std_ulogic ;

Y_sl <=  A_sl and B_sul and
         J_uv(2) and K_sv(7) and M_slv(2);
Y_sl <=  A_sl and B_sul and
         J_uv(2) and K_sv(7) and M_slv(2);

Implication:Implication:
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Type Casting:
Unsigned, Signed   <=> Std_Logic_Vector

● Use type casting to convert equal sized arrays when:

A_slv <=  std_logic_vector( B_uv  ) ;
C_slv <=  std_logic_vector( D_sv  ) ;
A_slv <=  std_logic_vector( B_uv  ) ;
C_slv <=  std_logic_vector( D_sv  ) ;

● Unsigned, Signed     =>   Std_Logic_Vector

● Elements have a common base type (i.e. std_logic)
● Indices have a common base type (i.e. Integer)

<

G_uv <=  unsigned( H_slv ) ;
J_sv <=  signed(   K_slv ) ;

● Motivation, Unsigned - Unsigned = Signed?

signal X_uv, Y_uv  : unsigned (6 downto 0) ;
signal Z_sv        : signed   (7 downto 0) ;
. . .
Z_sv <= signed('0' & X_uv) - signed('0' & Y_uv) ;

signal X_uv, Y_uv  : unsigned (6 downto 0) ;
signal Z_sv        : signed   (7 downto 0) ;
. . .
Z_sv <= signed('0' & X_uv) - signed('0' & Y_uv) ;
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Numeric_Std Conversions:
Unsigned, Signed   <=> Integer

signal A_uv, C_uv   : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv   : signed( 7 downto 0) ;
signal Signed_int  : integer range -128 to 127;

signal A_uv, C_uv   : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv   : signed( 7 downto 0) ;
signal Signed_int  : integer range -128 to 127;

● Converting to and from integer requires a conversion function.

Unsigned_int <=   TO_INTEGER ( A_uv ) ;
Signed_int <=   TO_INTEGER ( B_sv ) ;
Unsigned_int <= TO_INTEGER ( A_uv ) ;
Signed_int <= TO_INTEGER ( B_sv ) ;

● Unsigned,  Signed   =>  Integer

C_uv <=   TO_UNSIGNED ( Unsigned_int, 8 ) ;
D_sv <=   TO_SIGNED ( Signed_int, 8 ) ;
C_uv <= TO_UNSIGNED ( Unsigned_int, 8 ) ;
D_sv <= TO_SIGNED ( Signed_int, 8 ) ;

● Integer    =>   Unsigned,  Signed
8

8

Array
width = 8
Array
width = 8

● Motivation (indexing an array of an array):

Data_slv <=  ROM(   TO_INTEGER( Addr_uv) ) ;Data_slv <=  ROM( TO_INTEGER( Addr_uv) ) ;
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Supporting Standards
● VHDL is an IEEE standard
● It is your right and responsibility to participate
● Join

● IEEE
● DASC:  see http://dasc.org
● VASG:  see http://www.eda.org/vasg
● Accellera:  see http://www.accellera.org
● VHDL-200x:  see http://www.eda.org/vhdl-200x
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Vendor Support of Standards
EDA vendor support of standards is not as simple as it may
seem.  For EDA vendors, supporting a standard is an
investment.  Hence, feature support is market driven.  They
don't support new features based on merit, they support them
based on user requests.

As a result, if you see new features in a standard that you
would like to use, make sure to request that your EDA vendor
support the feature.

http://dasc.org
http://www.eda.org/vasg
http://www.accellera.org
http://www.eda.org/vhdl-200x
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SynthWorks VHDL Training
Comprehensive VHDL Introduction   4 Days
http://www.synthworks.com/comprehensive_vhdl_introduction.htm

A design and verification engineers introduction to VHDL syntax,
RTL coding, and testbenches.
Our designer focus ensures that your engineers will be productive
in a VHDL design environment.

VHDL Coding Styles for Synthesis  4 Days
http://www.synthworks.com/vhdl_rtl_synthesis.htm

    Engineers learn RTL (hardware) coding styles that
    produce better, faster, and smaller logic.

VHDL Testbenches and Verification  3 days
http://www.synthworks.com/vhdl_testbench_verification.htm

    Engineers learn how create a transaction-based
    verification environment based on bus functional models.

For additional courses see:    http://www.synthworks.com

http://www.SynthWorks.com
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http://www.synthworks.com/vhdl_rtl_synthesis.htm
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