
Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003

Enhancements to VHDL's Packages

by
Jim Lewis

Director of Training, SynthWorks Design Inc
Jim@SynthWorks.com

http://www.SynthWorks.com

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P2

● IEEE 1076.3 (numeric_std) and IEEE 1164 (std_logic_1164).
● Logic reduction operators
● Array / scalar logic operators
● Array / scalar addition operators
● TO_X01, IS_X for unsigned and signed
● Shift operators for std_logic_vector and std_ulogic_vector
● Unsigned arithmetic for std_logic_vector & std_ulogic_vector
● TextIO for std_logic_1164 and numeric_std
● Floating point arithmetic

● Review of strong typing, overloading, type conversions

Enhancements to VHDL's Packages

Caution:
Work in progress. Some items presented may change
Caution:
Work in progress. Some items presented may change

http://www.SynthWorks.com

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P3

● For std_logic_vector, std_ulogic_vector, unsigned and signed.

Logic Reduction Operators

function and_reduce(arg : std_logic_vector) return std_ulogic;
function and(arg : std_logic_vector) return std_ulogic;
function and_reduce(arg : std_logic_vector) return std_ulogic;
function and(arg : std_logic_vector) return std_ulogic;

● Possible forms (being coordinated with VHDL-200X*):

● Calculating Parity with reduction operators:

Parity <= xor Data ;Parity <= xor Data ;

● Calculating Parity without reduction operators:

Parity <= Data(7) xor Data(6) xor Data(5) xor Data(4)
 Data(3) xor Data(2) xor Data(1) xor Data(0) ;
Parity <= Data(7) xor Data(6) xor Data(5) xor Data(4)
 Data(3) xor Data(2) xor Data(1) xor Data(0) ;

● *VHDL-200X may fasttrack overloading unary logic operators.

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P4

Array / Scalar Logic Operators
● Proposal: Create symmetric overloading for bit_vector*,

std_logic_vector, std_ulogic_vector, unsigned, and signed

function "and"(l : std_logic_vector; r : std_ulogic)
 return std_logic_vector;
function "and"(l : std_ulogic; r : std_logic_vector)
 return std_logic_vector;

function "and"(l : std_logic_vector; r : std_ulogic)
 return std_logic_vector;
function "and"(l : std_ulogic; r : std_logic_vector)
 return std_logic_vector;

● * Proposed as a VHDL-200X activity

signal ASel, BSel, CSel, DSel : std_logic ;
signal Y, A, B, C, D : std_logic_vector(3 downto 0) ;
. . .
Y <= (A and ASel) or (B and BSel) or
 (C and CSel) or (D and DSel) ;

signal ASel, BSel, CSel, DSel : std_logic ;
signal Y, A, B, C, D : std_logic_vector(3 downto 0) ;
. . .
Y <= (A and ASel) or (B and BSel) or
 (C and CSel) or (D and DSel) ;

● Application

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P5

Array / Scalar Logic Operators
● What is the hardware implication of the following:

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ;

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ;

A(0)

A(1)

A(3)

ASel

T(0)

T(1)

T(3)

...

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P6

Array / Scalar Addition Operators
● Mix an array with a scalar for unsigned and signed addition.

function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;
function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;

signal Cin : std_logic ;
signal A, B : unsigned(7 downto 0) ;
signal Y : unsigned(8 downto 0) ;
. . .
Y <= A + B + Cin ;

signal Cin : std_logic ;
signal A, B : unsigned(7 downto 0) ;
signal Y : unsigned(8 downto 0) ;
. . .
Y <= A + B + Cin ;

The value of Cin will be expanded to be
"0" & Cin and typed appropriately:

When Cin = '0', value expands to "0000"
When Cin = '1', value expands to "0001"

The value of Cin will be expanded to be
"0" & Cin and typed appropriately:

When Cin = '0', value expands to "0000"
When Cin = '1', value expands to "0001"

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P7

TO_X01, TO_X01Z, TO_UX01,
and IS_X
● For types unsigned and signed

function To_X01 (s : unsigned) return unsigned;
function Is_X (s : unsigned) return boolean;
function To_X01 (s : unsigned) return unsigned;
function Is_X (s : unsigned) return boolean;

● Motivation: consistency with std_logic_1164

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P8

Shift Operators
● For std_logic_vector and std_ulogic_vector

function "sll" (l : std_logic_vector; r : integer)
 return std_logic_vector;

function "sll" (l : std_ulogic_vector; r : integer)
 return std_ulogic_vector;

function "sll" (l : std_logic_vector; r : integer)
 return std_logic_vector;

function "sll" (l : std_ulogic_vector; r : integer)
 return std_ulogic_vector;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P9

Unsigned Arithmetic for
std_logic_vector & std_ulogic_vector

● Rationale: Testbench code

constant CHIP1_RAM_BASE : std_logic_vector(31 downto 0)
 := X"40000000" ;
constant ZERO_DATA : std_logic_vector(31 downto 0)
 := (others => '0') ;
. . .
for i in 0 to 31 loop

 CpuWrite(CpuRec, CHIP1_RAM_BASE + i , ZERO_DATA + 2**i);

end loop ;

constant CHIP1_RAM_BASE : std_logic_vector(31 downto 0)
 := X"40000000" ;
constant ZERO_DATA : std_logic_vector(31 downto 0)
 := (others => '0') ;
. . .
for i in 0 to 31 loop

 CpuWrite(CpuRec, CHIP1_RAM_BASE + i , ZERO_DATA + 2**i);

end loop ;

● Note: requires minor VHDL LRM update to make this
"LRM-legal". VHDL ISAC is currently working on this.

● Add new package named ?numeric_std_unsigned?

CHIP1_RAM_BASE + i , ZERO_DATA + 2**i

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P10

TextIO
● IEEE 1076.3 (numeric_std) and IEEE 1164 (std_logic_1164).

● Synopsys has donated the package std_logic_textio, which
is planned to be updated in a compatible fashion to become
the standard.

To_string(now, right, 12)To_string(now, right, 12)

● Additional functionality: Overloaded String functions

write(Output, "%%%ERROR data value miscompare." & LF &
 " Actual data value = " & to_hstring(Data) & LF &
 " Expected data value = " & to_hstring(ExpData) & LF &
 " at time: " to_string(now, right, 12)) ;

write(Output, "%%%ERROR data value miscompare." & LF &
 " Actual data value = " & to_hstring(Data) & LF &
 " Expected data value = " & to_hstring(ExpData) & LF &
 " at time: " to_string(now, right, 12)) ;

● Usage (with VHDL's built-in write):

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P11

Floating Point
● Addition of a family of packages
● See David Bishop's paper later in the conference for details.

● Session 6.2

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P12

Review
● Strong Typing
● Overloading
● Ambiguous Expressions
● Type Conversions

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P13

Strong Typing

Operation Size of Expression

Y <= A ; A'Length

Operation Size of Expression

Y <= A ; A'Length

●● Size and type of targetSize and type of target (left) = size and type of expression (right)

Y <= A and B ; A'Length = B'Length

W <= A > B ; Boolean

Y <= A + B ; Maximum (A'Length, B'Length)

V <= A * B ; A'Length + B'Length

signal A8, B8, Result8 : std_logic_vector(7 downto 0) ;
signal Result9 : std_logic_vector(8 downto 0) ;
signal Result7 : std_logic_vector(6 downto 0) ;
. . .

Result8 <= A8 + B8 ;

signal A8, B8, Result8 : std_logic_vector(7 downto 0) ;
signal Result9 : std_logic_vector(8 downto 0) ;
signal Result7 : std_logic_vector(6 downto 0) ;
. . .

Result8 <= A8 + B8 ;

● Strong typing is like an assertion check for expressions:

Explicit check for correct
sized expressions
Explicit check for correct
sized expressions

Result9 <= ('0' & A8) + ('0' & B8) ;

Result7 <= A8(6 downto 0) + B8(6 downto 0) ;

Y <= A + 10 ; A'Length

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P14

Overloading
Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Numeric Array Array Array*
Array Integer Array*
Integer Array Array*

Logic, Addition Array Std_ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std_ulogic

* for comparison operators the result is boolean

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P15

Ambiguous Expressions

Z_sv <= A_sv + "1010" ;Z_sv <= A_sv + "1010" ;

● The following expression is ambiguousambiguous and an errorerror:

● How do we solve this problem?

● An expression / statement is ambiguous if more than one operator
symbol or subprogram can match its arguments.

● Issues typically only arise when using literals.

●● Std_Logic_ArithStd_Logic_Arith defines the following two functions:

function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: UNSIGNED) return SIGNED;
function "+" (L, R: SIGNED) return SIGNED;
function "+" (L: SIGNED; R: UNSIGNED) return SIGNED;

Is "1010" Signed or UnsignedIs "1010" Signed or Unsigned
"1010" = -6 or 10

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P16

Std_Logic_Arith:
Ambiguous Expressions

Z_sv <= A_sv + signed'("1010") ;Z_sv <= A_sv + signed'("1010") ;

● VHDL type qualifier (type_name'type_name') is a mechanism that specifies the type
of an operand or return value of a subprogram (or operator).

-- Z_sv <= A_sv + signed("1010") ;-- Z_sv <= A_sv + signed("1010") ;

● Leaving out the ' is an error:

Z_sv <= A_sv + signed(B_slv) ;Z_sv <= A_sv + signed(B_slv) ;

● Without ', it is type casting. Use type casting for:

Z_sv <= A_sv - 6 ;Z_sv <= A_sv - 6 ;

● Recommended solution, use integer:

Effects all numeric
operators in
std_logic_arith

Effects all numeric
operators in
std_logic_arith

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P17

Type Conversions

● What conversion functions are needed?
● Signed & Unsigned (elements) <=> Std_Logic
● Signed & Unsigned <=> Std_Logic_Vector
● Signed & Unsigned <=> Integer
● Std_Logic_vector <=> Integer

● VHDL Built-In Conversions
● Automatic Type Conversion
● Conversion by Type Casting

● Conversion functions located in Numeric_Std

● VHDL is dependent on overloaded operators and conversions

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P18

Automatic Type Conversion:
Unsigned, Signed <=> Std_Logic

● Two types convert automatically when both are subtypes of the same type.

● Elements of Signed, Unsigned, and std_logic_vector = std_logic
● Elements of these types convert automatically to std_ulogic or std_logic

A_sl <= J_uv(0) ;A_sl <= J_uv(0) ;LegalLegal
AssignmentsAssignments B_sul <= K_sv(7) ;

L_uv(0) <= C_sl ;
M_slv(2) <= N_sv(2) ;

● Converting between std_ulogic and std_logic is automatic

subtype std_logic is resolved std_ulogic ;subtype std_logic is resolved std_ulogic ;

Y_sl <= A_sl and B_sul and
 J_uv(2) and K_sv(7) and M_slv(2);
Y_sl <= A_sl and B_sul and
 J_uv(2) and K_sv(7) and M_slv(2);

Implication:Implication:

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P19

Type Casting:
Unsigned, Signed <=> Std_Logic_Vector

● Use type casting to convert equal sized arrays when:

A_slv <= std_logic_vector(B_uv) ;
C_slv <= std_logic_vector(D_sv) ;
A_slv <= std_logic_vector(B_uv) ;
C_slv <= std_logic_vector(D_sv) ;

● Unsigned, Signed => Std_Logic_Vector

● Elements have a common base type (i.e. std_logic)
● Indices have a common base type (i.e. Integer)

<

G_uv <= unsigned(H_slv) ;
J_sv <= signed(K_slv) ;

● Motivation, Unsigned - Unsigned = Signed?

signal X_uv, Y_uv : unsigned (6 downto 0) ;
signal Z_sv : signed (7 downto 0) ;
. . .
Z_sv <= signed('0' & X_uv) - signed('0' & Y_uv) ;

signal X_uv, Y_uv : unsigned (6 downto 0) ;
signal Z_sv : signed (7 downto 0) ;
. . .
Z_sv <= signed('0' & X_uv) - signed('0' & Y_uv) ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P20

Numeric_Std Conversions:
Unsigned, Signed <=> Integer

signal A_uv, C_uv : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv : signed(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

signal A_uv, C_uv : unsigned (7 downto 0) ;
signal Unsigned_int : integer range 0 to 255 ;
signal B_sv, D_sv : signed(7 downto 0) ;
signal Signed_int : integer range -128 to 127;

● Converting to and from integer requires a conversion function.

Unsigned_int <= TO_INTEGER (A_uv) ;
Signed_int <= TO_INTEGER (B_sv) ;
Unsigned_int <= TO_INTEGER (A_uv) ;
Signed_int <= TO_INTEGER (B_sv) ;

● Unsigned, Signed => Integer

C_uv <= TO_UNSIGNED (Unsigned_int, 8) ;
D_sv <= TO_SIGNED (Signed_int, 8) ;
C_uv <= TO_UNSIGNED (Unsigned_int, 8) ;
D_sv <= TO_SIGNED (Signed_int, 8) ;

● Integer => Unsigned, Signed
8

8

Array
width = 8
Array
width = 8

● Motivation (indexing an array of an array):

Data_slv <= ROM(TO_INTEGER(Addr_uv)) ;Data_slv <= ROM(TO_INTEGER(Addr_uv)) ;

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P21

Supporting Standards
● VHDL is an IEEE standard
● It is your right and responsibility to participate
● Join

● IEEE
● DASC: see http://dasc.org
● VASG: see http://www.eda.org/vasg
● Accellera: see http://www.accellera.org
● VHDL-200x: see http://www.eda.org/vhdl-200x

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P22

Vendor Support of Standards
EDA vendor support of standards is not as simple as it may
seem. For EDA vendors, supporting a standard is an
investment. Hence, feature support is market driven. They
don't support new features based on merit, they support them
based on user requests.

As a result, if you see new features in a standard that you
would like to use, make sure to request that your EDA vendor
support the feature.

http://dasc.org
http://www.eda.org/vasg
http://www.accellera.org
http://www.eda.org/vhdl-200x

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P23

Author Biography
Jim Lewis, Director of Training, SynthWorks Design Inc.

Jim Lewis, the founder of SynthWorks, has seventeen years of
design, teaching, and problem solving experience. In addition
to working as a Principal Trainer for SynthWorks, Mr. Lewis
does ASIC and FPGA design, custom model development,
and consulting. Mr. Lewis is an active member of IEEE
Standards groups including, VHDL (IEEE 1076), RTL
Synthesis (IEEE 1076.6), Std_Logic (IEEE 1164), and
Numeric_Std (IEEE 1076.3). Mr. Lewis can be reached at 1-
503-590-4787, jim@SynthWorks.com, or
http://www.SynthWorks.com

SynthWorks

Lewis Copyright © 2003 SynthWorks Design Inc. All Rights Reserved. DVCon 2003 P24

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive_vhdl_introduction.htm

A design and verification engineers introduction to VHDL syntax,
RTL coding, and testbenches.
Our designer focus ensures that your engineers will be productive
in a VHDL design environment.

VHDL Coding Styles for Synthesis 4 Days
http://www.synthworks.com/vhdl_rtl_synthesis.htm

 Engineers learn RTL (hardware) coding styles that
 produce better, faster, and smaller logic.

VHDL Testbenches and Verification 3 days
http://www.synthworks.com/vhdl_testbench_verification.htm

 Engineers learn how create a transaction-based
 verification environment based on bus functional models.

For additional courses see: http://www.synthworks.com

http://www.SynthWorks.com
http://www.synthworks.com/comprehensive_vhdl_introduction.htm
http://www.synthworks.com/vhdl_rtl_synthesis.htm
http://www.synthworks.com/vhdl_testbench_verification.htm
http://www.synthworks.com

