
Extensions to the VHDL RTL Synthesis Standard

Jim Lewis
SynthWorks Design Inc.
Jim@SynthWorks.com

Vinaya K. Singh
Cadence Design Systems

vinaya@cadence.com

Abstract

In 1999, IEEE 1076.6, Standard for VHDL Register
Transfer Level Synthesis was first standardized. This
standard places coding restrictions on model developers
and language support requirements on synthesis tool
developers.

The goal of this standard is portability of RTL code on
different synthesis tools. If a model developer writes code
that is compliant to this standard, it will be supported by
all compliant synthesis tools. The 1999 revision of this
standard set the restrictions on tool vendors low with the
intention of getting to portability quickly.

Currently enhancements are being finalized for the
next draft of the standard. Syntax enhancements include
VHDL-93 support as well aliases and configurations to
name a few. Semantic enhancements transition us from a
template based semantic methodology to an algorithm
based semantic methodology. One of the benefits of this
is a richer, more flexible set of register coding styles.

This paper discusses the enhancements and shows how
they will help Joe Designer to efficiently write a wide
variety of hardware elements at a higher level. We will
also be asking for your support to encourage EDA
vendors to support VHDL standards.

1. Introduction
This paper is organized into four main sections:

semantics, sensitivity lists, syntax, and attributes. The
enhancements are shown in a case study format. We
show an example and explain how the enhancement will
benefit a designer.

Note this paper represents work in progress and as
such may change before the standard is finalized

2. Semantic Enhancements
2.1. Load Enable Registers

The current standard requires that clock be the only
condition in the clock statement of a register. To use the
current standard to code a load enable register, first code

the clock statement and then, separately, code the
semantics for the load enable. This is shown in the
following code segment:

LoadEnReg1Proc : process
begin
 wait until Clk = '1' ;
 if (LoadEn = '1') then
 Q <= D ;
 end if ;
end process ; -- LoadEnReg1Proc

The extended standard allows conditions in the clock
statement of a register. This allows the semantics for
clock and load enable to be coded in a single statement as
follows:

LoadEnReg2Proc : process
begin
 wait on Clk until LoadEn='1' and Clk='1' ;
 Q <= D ;
end process ; -- LoadEnReg2Proc

This can result in code that simulates faster. The
process only wakes up on the rising edge of Clk where
LoadEn (load enable) is active. As a result, the code
following the clock statement will be evaluated less often.

The extended standard also allows clock and load
enable to be coded together when using a similar “if”
style register:

LoadEnReg3Proc : process (Clk)
begin
 if LoadEn='1' and Clk='1' and Clk’event then
 Q <= D ;
 end if;
end process ; -- LoadEnReg3Proc

2.2. Register with Asynchronous Reset
Implementing asynchronous reset requires reset to

have priority over Clk. In the current standard, the only
way to code this is using an “if-then-elsif” priority
structure as shown below:

ResetReg1Proc : process(Clk, nReset)
begin
 if nReset = '0' then
 Q <= '0' ;
 elsif rising_edge(Clk) then
 Q <= D ;
 end if ;
end process ; -- ResetReg2Proc

The extended standard allows an algorithmic approach
to implementing hardware. A register with asynchronous
reset may be coded as follows with the extended standard:

ResetReg2Proc : process(Clk, nReset)
begin
 if rising_edge(Clk) and nReset = '1' then
 Q <= D ;
 elsif nReset = '0' then
 Q <= '0' ;
 end if ;
end process ; -- ResetReg2Proc

This can result in code that simulates faster. Typically
the reset condition is only active at the beginning of a
simulation. By coding the most prevalent condition first,
less conditions need to be evaluated for most executions
of the process.

2.3. Registers with Mixed Reset Conditions
Some designers code all registers in a block in the

same process. If some registers require reset and some do
not, the following code can result:

TwoReg1Proc : process(Clk, nReset)
begin
 if nReset = '0' then
 Q1 <= '0' ;
 elsif rising_edge(Clk) then
 Q1 <= D1 ;
 Q2 <= D2 ;
 end if ;
end process ; -- TwoReg1Proc

This code results in extra logic being created. The
extra logic (multiplexer shown in the figure below)
maintains the value of Q2 during reset. This is an
accurate reflection of the above code since during reset
Q2 does not get a new value, even if clock changes.

i0

i1
o

sel
D2

nReset
Clk

Q2D Q

Clk

This extra logic results in a larger, slower design. To
create efficient hardware with the current standard one
must use two processes.

The algorithmic understanding of semantics of the
extended standard gives us more options to implement the
hardware. With the extended standard, the priority
structure of the asynchronous reset can be created with an
“if-then-end if” priority structure as shown below:

TwoReg2Proc : process(Clk, nReset)
begin
 if rising_edge(Clk) then
 Q1 <= D1 ;
 Q2 <= D2 ;
 end if ;
 if nReset = '0' then
 Q1 <= '0' ;
 end if ;
end process ; -- TwoReg2Proc

During reset of TwoReg2Proc, Q2 will get updated
only by the rising-edge of clock and not by a value of
nReset. Hence, no extra logic will be produced.

2.4. Registers and Subprograms
The extended standard permits registers to be modeled

inside a subprogram.

architecture RTL of Shift4x1 is -- 4 Stage Shift Reg
 procedure FF(
 signal Clk : in Std_Logic ;
 nReset : in Std_Logic ;
 D : in Std_Logic ;
 signal Q : out Std_Logic
) is
 begin
 if nReset='0' then
 Q <= '0';
 elsif Rising_Edge(Clk) then
 Q <= D;
 end if;
 end FF;
 -- Clk, nReset, D, Q are ports of std_logic
 signal Reg1, Reg2, Reg3 ;
begin
 FF(Clk, nReset, D, Reg1);
 FF(Clk, nReset, Reg1, Reg2);
 FF(Clk, nReset, Reg3, Q);
end RTL ;

This feature allows the creation of a package with a
generic set of registers in it. A practical use of this would
be to switch from asynchronous resets (in an FPGA
implementation) to synchronous resets (in an ASIC
implementation).

2.5. Dual-Edged flip-flops
The extended standard supports flip-flops with

multiple edges. When multiple edges are specified for
flip-flops, the priority relationships of the clocks are
ignored by synthesis.

DualEdgeFF : process(nReset, Clk1, Clk2)
begin
 if rising_edge(Clk1) and nReset = '1' then
 Q <= D ; -- Functional Data
 elsif rising_edge(Clk2) and nReset = '1' then
 Q <= SD ; -- Scan Data
 elsif (nReset = '0') then
 Q <= '0' ;
 end if ;

 -- RTL_SYNTHESIS OFF
 if rising_edge(Clk1) and rising_edge(Clk2) then
 report "Warning: . . ." severity warning ;
 Q <= 'X' ;
 end if ;
 -- RTL_SYNTHESIS ON
end process;

The meta-comments, "-- RTL_SYNTHESIS OFF" and
"-- RTL_SYNTHESIS ON" cause the synthesis tool to
ignore the code between them. This code can be used to
validate that the assumptions that were made for synthesis
are valid. In this case the code makes sure both clocks do
not change at the same time. If the RTL code is written
this way (and they work), RTL simulations will compare
with Gate level simulations.

The Dual-Edge coding concept can be used to handle
rising and falling edges of the same clock as shown
below:

DualEdge_Proc: process (Clk, Reset) is
begin -- process DualEdge_Proc
 if Reset = '1' then
 Q <= (others => '0');
 elsif rising_edge(Clk) then
 Q <= D4Rise;
 elsif falling_edge(Clk) then
 Q <= D4Fall;
 end if;
end process DualEdge_Proc;

2.6. Mixing Logic, Latches, and Registers
The algorithmic nature of the extended standard allows

mixing of registers, latches, and combinational logic in
the same process. To illustrate this, consider the
following process:

-- Note SPLIT and SIZE are really generics
Constant SPLIT : integer := 3 ;
Constant SIZE : integer := 8 ;
signal Q1 : std_logic_vector (SIZE – 1 downto 0) ;
-- note that lsb and msb are defined identically to Q1
 . . .

RegPlusLatProc : process(Clk, nReset, D3)
begin
 for i in Q1'range loop
 if reset ='1' then
 if(i < SPLIT) then
 Q1(i) <= '0';
 else
 Q1(i) <= '1';
 end if;
 elsif(clk'event and clk='1') then
 if(i < SPLIT) then
 Q1(i) <= lsb (i);
 else
 Q1(i) <= msb (i-SPLIT);
 end if;
 end if;
 end loop;

 if Clk = '1' then
 Q3 <= D3 ;
 end if ;
end process ;

We do not necessarily recommend coding this way. In
fact, this can be coded in a potentially more simulation
efficient manner as follows:

AltProc : process(Clk, nReset)
begin
 if (nReset = '0') then
 Q1 <= ((Q1'left - SPLIT) downto 0 => '1') &
 ((SPLIT - 1) downto 0 => '0') ;
 elsif rising_edge(Clk) then
 Q1 <= msb ((Q1'left - SPLIT) downto 0) &
 lsb((SPLIT - 1) downto 0) ;
 end if ;

Q3 <= D3 when Clk = '1' ;

2.7. Implicit Finite Statemachines
Implicit statemachines use multiple clock

specifications in a single process to model statemachines.
The state-register is not explicitly identified. This
modeling helps a designer describe state machine at the
protocol or algorithmic level.

UartTxFunction : Process
Begin
 TopLoop : loop
 if (nReset = '0') then
 SerialDataOut <= '1' ;
 TxRdyReg <= '1' ;
 end if ;

 -- Wait for data and then send start bit
 wait until nReset = '0' or
 (rising_edge(UartTxClk) and DataRdy = '1') ;
 next TopLoop when nReset = '0' ;
 SerialDataOut <= '0' ;
 TxRdyReg <= '0' ;

 -- Send 8 Data Bits
 for i in 0 to 7 loop
 wait until nReset = '0' or rising_edge(UartTxClk) ;
 next TopLoop when nReset = '0' ;
 SerialDataOut <= DataReg(i) ;
 TxRdyReg <= '0' ;
 end loop ;

 -- Send Parity Bit
 wait until nReset = '0' or rising_edge(UartTxClk) ;
 next TopLoop when nReset = '0' ;
 SerialDataOut <= DataReg(0) xor DataReg(1) xor
 DataReg(2) xor DataReg(3) xor DataReg(4) xor
 DataReg(5) xor DataReg(6) xor DataReg(7) ;
 TxRdyReg <= '0' ;

 -- Send Stop Bit
 wait until nReset = '0' or rising_edge(UartTxClk) ;
 next TopLoop when nReset = '0' ;
 SerialDataOut <= '1' ;
 TxRdyReg <= '1' ;
 end loop ;
end process ;

3. Sensitivity List Enhancements
This section explains the basis for additional rules on

sensitivity lists imposed by the extended standard. The
goal of these additional rules is to ensure portability of a
designer’s code.

3.1. Sensitivity Lists & Combinational Logic
Consider the following code. Note that only A is on

the sensitivity list. What should this code create?

StrangeLatProc : process (A)
begin
 C <= A and B ;
end process ;

How does this process work? When A changes, C
gets updated. When B changes, C maintains its current
value until A changes sometime later. This is a circuit
that has a storage element and updates on a change of a
signal. A detailed analysis shows this creates a register
plus combinational logic [Molenkamp].

What do synthesis tools do with this code? Some
produce a register plus combinational logic (as the code
implies) and some create combinational logic (as the
designer most likely intended). We have a problem. The
code is not portable.

Synthesis tools that are compliant to the extended
standard are required to terminate with an error in this
situation. The code is not permitted to combinational
logic since the process does not have a complete
sensitivity list. The code is not permitted to create a
register since there is not an explicit edge condition (such
as Clk='1' and Clk'event).

3.2. Sensitivity Lists & Latches
Consider the following code. Note that there is no

clk'event. Is this a register or a latch?

CouldBeARegProc: process (Clk)
begin
 if (Clk = '1') then
 Q <= D ;
 end if ;
end process ;

How does this process work? When Clk changes, the
process will execute. If Clk='1' then Q will get updated.
Hence, Q will get updated on the rising edge of Clk. This
code suggests a register.

What do synthesis tools do with this code? Some
produce a register (as the code implies) and some create a
latch (ignoring the sensitivity list). Again we have a
portability problem.

Synthesis tools that are compliant to the extended
standard are required to terminate with an error in this
situation. The code is not permitted to create a latch since
the process does not have a complete sensitivity list. The
code is not permitted to create a register since there is not
an explicit edge condition (such as Clk='1' and Clk'event).

3.3. Latches: Bad and Good
Consider the following code. What should be created

by process CouldBeALatch1 and CouldBeALatch2?

CouldBeALatch1 : process (ENABLE, D)
begin
 if ENABLE = '1' then
 Q1 <= D;
 else
 Q1 <=Q ;
 end if;
end process; -- CouldBeALatch1

CouldBeALatch2 : process (ENABLE, D, Q2)
begin
 if ENABLE = '1' then
 Q2 <= D;
 else
 Q2 <= Q2 ;
 end if;
end process; -- CouldBeALatch2

Either of these could be interpreted to be a latch under
some situations. In example, CouldBeALatch1, the
process never runs for Q1 changing, hence, the else
clause never gets evaluated. In example,
CouldBeALatch2, Q2 is on the sensitivity list. When Q2
changes and Enable is '0', Q2 will be updated with itself.
This is a zero delay feedback path.

In both cases, the results depend on the synthesis tool.
Some tools implement a multiplexer with the output (Q1
or Q2) fed-back to one of the inputs. This is zero delay
feedback just as the code implies. Some tools implement
a latch, probably as the designer intended.

In the extended standard, CouldBeALatch1 is an error
since Q1 is not on the sensitivity list. It is the current
belief of the standards group that CouldBeALatch2 is
combinational logic with zero delay feed back just as the
code implies.

Neither CouldBeALatch1 nor CouldBeALatch2 create
a latch as the designer intended. An effective-portable
coding style for a latch is:

AGoodLatch : process (ENABLE, D)
begin
 if ENABLE = '1' then
 Q3 <= D;
 end if;
end process; -- AGoodLatch

4. Syntax Enhancements
Syntax enhancements include aliases, configurations,

entity instantiation (VHDL-93), conditional signal
assignment without an else clause (VHDL-93), and
guarded blocks.

4.1. Netlists and Entity Instantiation
The extended standard supports entity instantiation.

This should facilitate creation of netlists with a text
editor.

 U_MuxL : entity work.Mux8x2
 port map (Sel, A, C, MuxL);

 U_MuxR : entity work.Mux8x2
 port map (Sel, B, D, MuxR);

 U_Adder : entity work.Adder8
 port map (MuxL, MuxR, Add);

4.2. Aliases
The extended standard supports aliases in user code.

An alias is a convenient way to give a data object
parameter a known direction in a subprogram.

alias new_L: unsigned (L'length-1 downto 0) is L;

See the package std_logic_1164 for many complete
examples. Note that the use of aliases in standard
packages is supported by the current standard.

4.3. Latches and Concurrent Statements
The extended standard allows latches to be created

with either conditional signal assignment (concurrent if)
or selected signal assignment (concurrent case).

Q1 <= D1 when Gate = '1' ; -- VHDL-93 feature

with Gate select
 Q2 <= D2 when '1',
 unaffected when others ;

4.4. Registers and Concurrent Statements
The extended standard allows registers to be created

with conditional signal assignment (concurrent if):

Q <= D when rising_edge(Clk) ; -- VHDL-93 feature

Caution: From a language point of view, this is
equivalent to the following process:

InefficientReg: process(Clk, D)
begin
 if rising_edge(Clk) then
 Q <= D ;
 end if ;
end process ;

The code is correct, but inefficient. Having D on the
sensitivity list causes the process to run when D changes,
but Q will not be updated when D changes (unless Clk
changed simultaneously).

4.5. Latches and Guarded Blocks
The extended standard supports creating a latch with a

guarded block as shown below:

guardedLatch : block (enable = '1')
begin
 latch1 <= guarded d;
end block ;

4.6. Registers and Guarded Blocks
The extended standard supports creating a register

with a guarded block as shown below:

guardedRegSyncBlock : block ((not clk'stable and clk='1')
and set = '0' and reset = '0')
begin
 Q <= guarded D;
end block ;

guardedRegAsyncBlock : block (set = '1' or reset = '1')
begin
 Q <= guarded '0' when reset = '1' else
 '1' when set = '1' else
 'X' ;
end block ;

5. Attribute and Metacomment Additions
Attributes and Metacomments are used as guides put

in the code to tell a synthesis tool the intent of the code.
As such they provide a starting point for trying to
understand and synthesize the code. The intent is to reach
the desired result, and to reach it in an expedient manner.

Caution: this section is a small sampling of the work
being discussed in committee and is not in any way
mature. For current work on the attributes see the VHDL
SIWG reflector (http://www.vhdl.org/siwg). Note that it
is a good time to contribute ideas or express an opinion
(good or bad) about the attributes being considered.

5.1. Attributes for design hierarchy
Hierarchy attributes control creation or destruction of

hierarchy for entities, blocks, processes, and
subprograms. These features control which RTL pieces
of code are optimized together.

Using these features a piece of RTL code can be
isolated and synthesized by itself simply by enclosing the
code in a VHDL block statement and creating hierarchy.

Pieces of RTL code from separate entities can be
optimized together by loading a higher level of the design
and removing the hierarchy of the two entities.

5.2. Attributes for hardware implementation

5.2.1. Registers with Set and Reset
Coding a register with both set and reset involves a

priority relationship between set and reset:

attribute SYNC_SET_RESET : boolean;
attribute SYNC_SET_RESET of nReset : signal is true;
attribute SYNC_SET_RESET of nSet : signal is true;
. . .
SetResetReg1 : process (Clk, nSet, nReset)
begin
 if (nReset = '0') then
 Q <= '0' ;
 elsif (nSet = '0') then
 Q <= '1' ;
 elsif rising_edge(Clk) then
 Q <= D ;
 end if ;
end process ;

The intention of the attribute is to permit the synthesis
tool to ignore the priority relationship between set and
reset.

5.2.2. One Hot Multiplexers
A one-hot multiplexer is And-Or logic where the

select lines are mutually exclusive from each other.
When the control signal and the data signal are the same
size, the code is as follows:

Y <=
 (ASel and A) or (BSel and B) or
 (CSel and C) or (DSel) and D) ;

When the data signal is std_logic_vector and the
control signal is std_logic, the situation is more
interesting. The following correctly describes a one-hot
multiplexer:

MuxSel <= ASel & BSel & CSel & DSel ;

OneHotMux_1 : process (MuxSel, A, B, C, D)
begin
 case MuxSel is -- ieee rtl_synthesis infer one_hot_mux
 when "1000" => Y <= A;
 when "0100" => Y <= B;
 when "0010" => Y <= C;
 when "0001" => Y <= D;
 when "0000" => Y <= (others => '0');
 when others => Y <= (others => 'X');
 end case ;
end process ;

This metacomment is intended to give a strong hint to
a synthesis tool about the implementation of the code.
Note however, the code must correctly describe a one hot
multiplexer or an error will result.

5.2.3. Encoded Multiplexers
When a multiplexer is not a power of two, some

synthesis tools implement non-optimal logic.

EncMux_1 : process (MuxSel, A, B, C)
begin
 case MuxSel is -- ieee rtl_synthesis infer mux
 when "00" => Y <= A;
 when "01" => Y <= B;
 when "10" => Y <= C;
 when others => Y <= (others => 'X');
 end case ;
end process ;

5.2.4. Clock Gates
To gate a clock with the current standard requires

explicit modeling of the clock gate as shown below:

ClkGate <= ClkEnable and Clk ; -- Clock Gate

GatedClkProc : process
begin
 wait until ClkGate = '1' ;
 Q <= D ;
end process ;

The extended standard allows a register with load
enable to create a clock gate if the appropriate
metacomment or attribute is set.

attribute GATE_CLK : boolean;
attribute GATE_CLK of Clk : signal is true;
. . .

LoadEnReg2Proc : process
begin
 wait on Clk until LoadEn='1' and Clk='1' ;
 Q <= D ;
end process ; -- LoadEnReg2Proc

5.3. Additional Attributes
Other attributes under consideration include attributes

that are for mapping operators/statements to specific
hardware components, directing resource sharing, and
directing subprogram implementation.

6. Supporting Standards
VHDL standards are IEEE standards. As a VHDL

community member it is both your right and
responsibility to join IEEE committees and participate in
VHDL standards. If you don’t participate, the changes
you envision and wish for (no matter how simple or
obvious) will not happen.

How do I find out more about VHDL Standards? Go
to the web link: http://www.eda.org.

How do I make a VHDL issue report or feature
request? Go the web link: http://www.eda.org/vasg.

How do I participate in IEEE VHDL standards? Join
both Design Automation Standards Committee (DASC)
and VHDL Analysis and Standardization Committee
(VASG). DASC is responsible for all EDA standards
within IEEE. VASG is the DASC group responsible for
VHDL. By joining these committees, you will keep up
on all VHDL and related standards developed by IEEE.
Join DASC by going to http://dasc.org and clicking on
“Application Form” link. Join VASG by going to
http://www.eda.org/vasg [MenchAshenden].

How do I find out more about the VHDL synthesis
standard? The 1999 revision of 1076.6 is published and
sold by IEEE. Information about on going work can be
found at: http://www.vhdl.org/siwg.

Are there other groups working on EDA or VHDL
standards? Accellera Designers Forum, the group formed
from the merge of VIUF (VHDL International Users
Forum) and OVI (Open Verilog International), is
sponsoring working groups for developing VHDL,
Verilog , system level design, and related standards. To
find out more about Accellera Designers Forum see the
web link: http://www.eda.org/adf.

Why is my EDA vendor slow in supporting VHDL
standards? Some EDA vendors are of the opinion that
since their users do not request that standards be
supported that they are not interested in the new standard.
On the other hand, many users think that EDA vendors
should support all VHDL standards relevant to their tools,
and that they should not have to request their vendor to
support the standards. As a result, we have a stand-off.

How do we get EDA vendors to support standards?
To break the stand-off, EDA tool purchasers (perhaps the
most influential people) and users need to notify EDA
vendors that they want them to support all VHDL
standards relevant to their tools.

7. Acknowlegements
This paper includes many examples taken from the

SIWG reflector. The authors would like to thank the
many people who have contributed examples to the
SIWG reflector.

8. References
[MenchAshenden] Paul Menchini and Peter Ashenden,

“Some Personal Thoughts on VHDL 200X”, to be
published in HDLCon 2002.

[Molenkamp] Egbert Molenkamp and Gerhard E.
Mekenkamp, “Processes with ‘incomplete’ sensitivity
lists and their synthesis aspects”, Proceedings of VIUF
1997

About SynthWorks VHDL Training

Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive_vhdl_introduction.htm
Engineers learn VHDL Syntax plus basic RTL coding
styles and simple procedure-based, transaction testbenches.
Our designer focus ensures that your engineers will be
productive in a VHDL design environment.

VHDL Coding Styles for Synthesis 4 Days
http://www.synthworks.com/vhdl_rtl_synthesis.htm
Engineers learn RTL (hardware) coding styles that
produce better, faster, and smaller logic.

VHDL Testbenches and Verification 3 days
http://www.synthworks.com/vhdl_testbench_verification.htm
Engineers learn how create a transaction-based
verification environment based on bus functional models.

For additional courses see: http://www.synthworks.com

http://www.synthworks.com/comprehensive_vhdl_introduction.htm
http://www.synthworks.com/vhdl_rtl_synthesis.htm
http://www.synthworks.com/vhdl_testbench_verification.htm
http://www.synthworks.com

