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Synth Works

Pre-Use of System Testbenches
e Approach

e Basics
e Traditional Approach

e System Only Test Approach

e Pre-Use Approach

e Transaction Based Testing
e Details

e Step by Step Overview of the Testbench Pieces

Getting the Slides: http://www.SynthWorks.com
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Design Under Test = MemIO SynthWorks

MemlIO Board

MemlIO
Cpulf UART | [« UART

IntCtrl Timer
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Testbench =

Synth Works

Code structure that allows waveforms to driven to the unit under
test and validates the results (visually or automatically)

Testbench =

Entity + Architecture(s)

library IEEE ;
use ieee.std logic 1164.all ;

entity TbCpuIlf is

Unit Under Test (UUT)
AKA DUT
Instantiation

end TbCpuIf ;
architecture tb of TbCpuIf is

R

begin
U CpuIf : CpuIlf
port map ( . . . ) ;

Stimulus Source
one or more processes
or instantiations

(CIk <= not Clk after 10 ns ;\

ResetProc : process

CpuProc : process
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Synth Works

Traditional Approach: Subblock

e Write a separate, custom testbench for each subblock.
e Test all functionality in that subblock

e Testing CpulF Subblock

Cpu Stimulus Source 3 U_CpulF:CpulF (,,,);
Clock & Reset Source —

e Testing IntCtrl Subblock

IntCtrl Stimulus Source »| U_IntCtrl : IntCtrl (, ,, ) ;
Clock & Reset Source —

e Test all other subblocks with separate, custom testbenches
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Traditional Approach: System SynthWorks

e Immerse the chip into a system environment

e Each interface in the system = one model (BFM and/or FFM)
e Test by running multiple test scenarios

e Re-validate each subblock in the system environment

:ThMemlO:
é:::::::::::::::::::::: TestCtrI ::::5:

UUT : MemlO { UartRx |-

Model : | Model |:
e Cpulf UART : — -
+] Clock and _ 3 ] UartTx g

Memlf SRAM
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Accelerating Verification SynthWorks

e Goal:
e Minimize test time without reducing test coverage

e Observations:
e Traditional subblock testbenches are used at the
beginning of testing and then abandoned.

e Subblock tests are re-validated at the system level

e If we can minimize the abandoned and duplicated work, we
can accelerate our verification effort.
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Proposal: System Only Tests SynthWorks

e No custom subblock testbenches
e Integrate all designs, and test at system level

e Hazard:
e Many designs being simultaneously debugged.

e When a bug is encountered, increased time may be spent
to isolate the error to a particular subblock.

e May have to fix the current bug before finding next bug.

e Increased time will be spent to run the subblock
simulations since all subblocks in the design are loaded.

e Conclusion:
e Not worth the risk. May actually increase time.
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Proposal: Pre-Use the System Testbench

e No custom subblock testbenches

e Use System Level Testbench for all testing
e Incrementally add and test subblocks

e Incrementally add system interface models

o Benefit
e One subblock being tested at a time
e Not writing subblock testbenches that get abandoned later
e No need to port subblock code to system level

e Conclusion:
e No additional risk since only testing one block at a time
e Speed up due to skipping custom subblock testbenches
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Pre-Use the System Testbench SynthWorks

e Step 1: Plan the tests first (Test Plan)

e Identify key driving interfaces required to get data into/out
of the design (CPU, PCI, ...)

e Plan to test these subblocks and testbench models first

TestCtrl ‘

UUT : MemlO
Cpulf UART

“[clock and |2
i IntCtrl Timer

Memilf
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Pre-Use: First Subblock Test SynthWorks

e Step 2: Code and Test Key Interfaces
e Cpulf (design) and CpuModel (testbench)

e Testing Cpulf using pieces of system-level testbench:

g e . UUT_ Mem|o
> : Cpulf

| Clock and
| Reset |

e Note all of the above functionality would be required in
some form in a subblock testbench.
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Pre-Use: First Subblock Test SynthWorks
e Step 2, Test 1 Continued: Cpulf + CpuModel
Test CPU UUT : MemlIO
Control ] Model ]
Cpulf

e Test Goal: Gain register IO access to other subblocks in chip
e Necessary to test other blocks

e Test Method: Write and read one register per internal block.

e Validation Plan
e Subblock: Visual check.
e System: Self-Checking. Expect to read back value written.

DesignCon 2003 14 Copyright © SynthWorks Design Inc 2003



Pre-Use: Concurrent Subblock Tests*

e Test 2A: Test Timer (design) and CpuModel (testbench)

Test || CPU | | UUT: MemlO

Control Model

Cpulf || Timer

e Test 2B: Test UART (design) and UartBfm (testbench)

Test | 1 CPU || UUT: MemlO | UartTx
Cpulf | [UART || [ ariRy

Control Model

e Test 2C: Test MemlF (design) and SramModel (testbench)

Test | | CPU | | UUT: MemlO || mﬁgfll
Cpulf || Memlf

Control Model

* Note many tasks can be done by independent design teams.
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Pre-Use: Subblock Tests = System Tests

e Once all subblocks are integrated into the design, the
testbench becomes a full system test.

UUT : MemlO
Cpulf UART

Clock and |

IntCtrl Timer

Memlf

e Constraint to approach:
Order of design and testing must be planned.
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Transaction Based Testing SynthWorks

e A transaction based test programs interface actions.

e Without transaction based testing, wiggle signals:

begin
nAds
Addr
Data

Read
wait

CpuProc

AN N NN
| n

: process

on

= UART DIVISOR HIGH after tpd ;
= X"0000" after tperiod + tpd ;
= '0' after tpd;

'0' after tpd, 'l' after tperiod + tpd ;

Clk until nRdy = '0' and Clk = '1' ;

e With transaction based testing, do actions on interfaces:

begin

CpuProc

: process

CpuWrite (CpuRec, UART DIVISOR HIGH, X"0000") ;

DesignCon 2003
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Transaction Based Testing SynthWorks

CpuWrite (CpuRec, UART DIVISOR HIGH, X"0000") ;
CpuWrite (CpuRec, UART DIVISOR LOW, X"000A") ;

CpuRead (CpuRec, UART STAT, DataOut) ;

e Key Features
e Program interface actions
e Procedure call replaces the detailed signaling
e No longer tied to the detailed signaling
e Test writer can focus on the tests rather than a HDL/HVL

DesignCon 2003
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Transaction Based Testing SynthWorks

e Flexibility: How does the testbench change if change CPUs?

C-Ic;itsrtol sl %86 lew| UUT: MemlO
Cpulf || Timer
C-lc;ﬁtsrtol | 68K les| UUT: MemlO
Cpulf || Timer

e Only the models change, not the transactions
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Transactions & Subblocks SynthWorks

e Flexibility is important for subblock testing.
e What happens if a subblock is unavailable?
e What if CPU has not been selected?

e Replace Cpulf + CpuModel with CpulfModel

Test Cpulf UUT : MemlIO
Control Model ,
Timer

<P D

e Later, when Cpulf available, use CpuModel
e Note, only the models change, not the transactions.

Test
Control

.

CPU
Model

R

UUT : MemlO

DesignCon 2003
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Summarv of ADDroaCh SynthWorks

e Transaction based testbench + planning =

e Possible to pre-use pieces of the system-level testbench to
test subblocks

o Benefit:
e Amount of development time decreases
e No longer need to develop subblock testbenches
e No longer need to port each test case to the system level
e |t automatically runs.
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Pre-Use of System Testbenches >/""¥erks

e Approach

e Basics
e Traditional Approach

e System Only Test Approach

e Pre-Use Approach

e Transaction Based Testing
e Details

e Step by Step Overview of the Testbench Pieces
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Testbench Structure SynthWorks

TestCtrl
Entity

TestCtrl

R A : __ R Test1
% - ] > Architecture

-------------- Test2
-] Clock and iy Ly Architecture
] Reset [ SR

TestN
Architecture

Key Features:
e Bus Functional Models (BFMs) implement interface signaling
e TestCtrl contains transactions to sequence BFMs
e Each test is a separate architecture of TestCtrl.
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Testbench Structure SynthWorks

e TbMemlO = Top level of testbench = Netlist = Test Harness

architecture Structural of TbMemIO is
-- Signal and Component Declarations go here

begin

U MemIO : MemIO port map ( . . .) ; DUT

U TestCtrl : TestCtrl port map ( . . .) ; Transaction
Source

U CpuModel : CpuModel port map ( . . .) ;

U UartTxBfm : UartTxBfm port map ( . . .) ; Bus Functional

Models
U UartRxBfm : UartRxBfm port map ( . . .) ;
U Sraml : SRAM1 port map ( . . .) ; FFM
U ClkReset : ClkReset port map ( . . .) ; Clocks + Reset

end Structural ;
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Testbench Structure: TestCtrl

Synth Works

e TestCtrl contains transactions to interact/sequence each BFM

TestCtrl

: CpuTestProc
! CpuWrite(...)i
CpuRead(...)

UartTbTxProc :
i UartSend(...)i

{ UartTbRxProc
: UartCheck()E

N

" UartRxRec

—

‘ ........ ...... >

=+ Serial Data
“to DUT '

8 Serial Data

DesignCon 2003
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TestCtrl Entity

Synth Works

entity TestCtrl is
generic (
tperiod Clk

CPU_STATUS MSG ON

: time :=
: std logic :=

10 ns ;
CPUTB_STATUS MSG OFF

O

)

port (
Clk : In std logic ;
nReset : In std logic ;

/harthRec : InOut UartTbRecType := InitTbUartTbRec ; )
UartRxRec : InOut UartTbRecType := InitTbUartTbRec ;
CpuRec : InOut CpuRecType := InitTbCpuRec ;

\?ntRec : InOut CpuRecType := InitTbCpuRec

)

/

end TestCtrl ;

Recommendation:

Keep TestCtrl entity in a separate file from the architecture(s).
Facilitates using multiple architectures.

DesignCon 2003
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TestCtrl Architecture: Big Picture

Synth Works

architecture |UartRxl| of TestCtrl 1is

begin

(CpuTestProc

: processl

One or more processes for each

J

independent source of stimulus

lll;

CpuRead (.

\begin
wait until nReset =
‘Cqurite(. <)
o) B

Interface Stimulus is generated

end process ;

with one or more procedure calls

(UarthTxProc

8 processl

Each test is a separate

‘begin ) architecture of TestCtrl
SyncTo (. DY (TestCtrl_UartRx1.vhd,
UartSend(. . .) ;| TestCtrl_UartRx2.vhd, ...)
end process ;
[UarthRxProc 3 process} A test developer Only needs
begin to understand TestCtrl and
VartCheck(. . .) ; not additional details of the
end process ; testbench approach
end Testl ;
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CpuTestProc : process -- TestCtrl UartRxl

-- Declarations left out

begin

wait until nReset =

CpuWrite (CpuRec,
CpuWrite (CpuRec,
CpuWrite (CpuRec,

PARITY EVEN &

CpuRead (CpuRec,
SyncTo (SyncIn =>

loop

CpuRead (CpuRec,
exit when (DataO(RX DATA VALID) =
wait for (100 * tperiod Clk)

end loop ;

CpuReadCheck (CpuRec, UART DATA,

end process ;

1o Start test after reset
UART DIVISOR HIGH, X"0000"); )
UART DIVISOR LOW, X"000A");
UART CFGl, X"00" & "00" & > Configure
STOP BITS 1 & DATA BITS 8); UART
UART TX INT STAT, DataO);
Synch with
UartTxRdy, SyncOut => CpuRdy) ;
UartTbTxProc
UART RX INT STAT, DataO);
111) ; Poll for Data
- 1 ns ;
X"4A", true); |Check Data
Continue Polling and Checking Data




Testbench Structure: UartTxRec  SvnthWorks
e Abstract Interface between TestCtrl and the UartTxBfm

i CpuTestProc  § |- - g R
i CpuWrite(...i [ ' »: CPU Bus =2
CpuRead(...) i

UartTbTxProc
! UartSend(...)i

-» Serial Data
- to DUT '

UartTxBfm |

{ UartTbRxProc |
: UartCheck()E '

- Serial Data -
= from DUT

UartRxBfm &
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Record: UartTbRecType SynthWorks

type UartTbRecType is record
CmdRdy : std_logic ; } Control /
CmdAck : std logic ; Handshaking
Data : std logic vector (7 downto 0);
StatusMode : unsigned ( 3 downto 0) ;
TbErrCnt : unsigned (15 downto 0) ; Data
UartBaudPeriod : unsigned (31 downto 0) ; o Fields
NumDataBits : unsigned ( 2 downto 0) ;
ParityMode : unsigned ( 2 downto 0) ;
NumStopBits : std logic ; ~

end record ;

e Issues with records
e UartTxRec has two drivers (TestCtrl and UartTxBfm)

e All types are based std_logic to facilitate resolving
contention
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Initializing UartTxRec

Synth Works

e Initialize UartTxRec at entity ports to avoid contention:

port (

UartTxRec

: InOut UartTbRecType

[

= InitTbUartTbRec ;]
J

U

Y

Initialization

e Undriven fields are initialized to 'Z' using the following constant:

constant InitTbUartTbRec :

UartTbRecType : (

CmdRdy =S>RS
CmdAck => "%,
Data => (others => 'Z'),
StatusMode => (others => 'Z'),
TbErrCnt => (others => '0'),
UartBaudPeriod => to unsigned(. o) 5 . .
NumDataBits => UARTTB DATA BITS 8, Fields driven by
ParityMode -> UarRTTB PARITY EVEN, | UartTxBfm are
NumStopBits => UARTTB_STOP_BITS_1 in bold text
)
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Testbench Structure: Procedures >vnthWerks

e Procedures handshake data/sequencing to the BFMs
e Not a lot of magic in the procedures

CpuWrite(...)i
CpuRead(...) i

- Serial Data

- Serial Data
~from DUT
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procedure UartSend ( SynthWorks

signal UartRec : inout UartTbRecType ;
Data : in std logic vector (7 downto 0) ;
IdleTime : in time := 0 ns ;
ErrorMode : in UartTb StatusModeType := UARTTB NO ERROR
) is
begin

-- Put Transaction into the Record
UartRec.Data <= Data ;
UartRec.StatusMode <= ErrorMode ;

-- Handshake with UartTxBfm
RequestAction (Rdy => UartRec.CmdRdy, Ack => UartRec.CmdAck) ;

-- Insert idle time between transactions
if (IdleTime > 0 ns) then

wait for IdleTime ; Basic Flow
end if ; e Put Transaction into Record
end UartSend ; e Handshake with Model
e Check Results
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Package: UartTbPkg SynthWorks

e All Constants, Types, and procedures that support UartTxBfm
get stored in the package UartTbPkg

library ieee ;
use jieee.std logic 1164.all ;

package UartTbPkg is

type UartTbRecType is record . . . ; Declare
constant InitTbUartTbRec : . . . ; Types,

5 o c Constants
procedure UartSend (. . . ) ; and

. e . Subprograms

end UartTbPkg ;

pégkage body UartTbPkg is

 procedure UartSend (. . .) is\

begin Implement
e Subprograms

\end procedure ; )

end UartTbPkg ;




Testbench Structure: Models SynthWorks

e Perform interface specific signaling
e Sequencing/Data values determined by values in record

TestCtrl

UartSend(”.ﬁ

EUarthRxProc : Serial Data

UartCheck()E s f |

; ; from DUT
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SynthWorks

UartTxBfm

e Models execute transactions requested by TestCtrl

e Transactions in TestCtrl

UartSend (UartTxRec, X"4A") ;
UartSend (UartTxRec, X"4B") ;

e Resulting Waveforms produced by UartTxBfm

patactk (LU L LU L LU L
DataOut | 8 8 5 5 8 8 Sy
DuSERE Ry

Y 1

A S L S T R
Send X"4A" Send X"4B"
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entity UartTxBfm is UartTxBfm: Overview

port (. . .) ;

end UartTxBfm ;

architecture Model of UartTxBfm is
-- declarations not shown

begin
-- Create UART Clock
UartClk <= . . . ;
e

-- Implement Model Functionality
UartTxFunction : process

-- declarations not shown
begin

WaitF R t e o o o .
aitForRequest( ) Basic Elements of a BFM

e Input Processing

e Internal Resources
e Functionality

e Protocol Checks

-- Send Start Bit
-- Send Data Bits
-- Send Parity Bit

-- Send Stop Bit

. end process ; e Setup and Hold Checks
end Model ;
UartTxFunction : process UartTxBfm: Details

-- declarations not shown
begin

-- Signal end of Transaction and
-- Wait For next Transaction
WaitForRequest( . . .) ;
/ -- Send Start Bit A\
wait until UartClk = '1' ;
DataOut <= '0' ;

-- Send Data Bits
for i in 0 to 7 loop

wait until UartClk = '1'

DataOut <= UartRec.TxData (i) ;
end loop ; Functionalitv
-- Send Parity Bit e Wait for Transaction
wait until UartClk = '1°'

e Code Functionality
_- Send Stop Bit e Put return value(s) in

wait until UartClk = '1' ; Record
\ patadut <= '1' ; e Signal End of Transaction

DataOut <= UartRec.TxParity ;

end process ;



Testbench Details: Handshaking — =y"thWorks

e Handshaking between CPU Transactions and CpuModel is
done through CpuRec

i CpuTestProc | [+ e
CpuWrite(...)i [4 1 CpuModel
CpuRead(...) { |

: UartTbTxProc UartTx | ‘Serial Data
: UartSend(...): [% —» - : :
N Model : :

{ UartTbRxProc
i UartCheck( )i

?Serial Data
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Handshaking SynthWorks

TestCtrl: UartTbTxProc UartTx
_Twait until nReset‘ WaitForRequest

.« e e Waiting . .
UartSend

Waiting . . . Waiting . . .|

Execute . . .

5 Transaction
WaitForRequest
Waiting . . ,y‘—“'——————__——_ Waiting . .
LE@rtSend\ c o o
RequestAction —
Waiting . . . ‘ —> Waiting . . .|

Execute .

Transaction

4_/— ‘WaitForRequest |
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Waiting . . .\




Testbench Details: Handshaking — =y"thWorks

e CpuRec fields CmdRdy and CmdAck are used for handshaking.

1) TestCtrl: 2) TestCtrl: 4) TestCtrl: 7) TestCtrl:
Copy CmdRdy = 1 CmdRdy =0 Get Results &
Transaction Issue next Transaction

to Record /
CmdRdy ) 5 g

! TestCtrl
L ¥
Record Fields : (j) ; /V@ L Shared

CmdAck l)__l |

n CpuModel

3) BFM: 5) BFM: 6) BFM:
CmdAck =0 Complete Transaction & CmdAck =1
Initiate Transaction Copy Results to Record
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Procedure RequestAction

Synth Works

procedure RequestAction (
signal Rdy : Out std logic ;
signal Ack : In std logic

) is

begin
-- Record contains new transaction
Rdy == Uall

-- Find Ack at the level '0'
if Ack /= '0' then

wait until Ack = '0' ;
end if ;

-- Prepare for Next Transaction
Rdy <= '0' ;

-- Transaction Done
wait until Ack = '1'
end procedure ;
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Procedure WaitForRequest SynthWorks

procedure WaitForRequest (

signal Clk : In std logic ;
signal Rdy : In std logic ;
signal Ack : Out std logic
) is
begin
-- Prepare for handshaking 3
Ack <z a0
End of
-- Allow Ack and Rdy to settle ™ | Previous Cycle
wait for 0 ns ; -- Ack Valid, Set Rdy
wait for 0 ns ; -- Rdy now valid -

(-~ Find Rdy high at a bus cycle boundary\ R
if Rdy /= '1l' then

wait until Rdy = '1!
wait until Clk = '1° > | Start of Cycle
end if ;

-- Model active and owns the record
Ack == Y09 p
end procedure ;

--43 --

Details Summary SynthWorks

e Using transaction tests + BFMs + a good set of abstractions,

e Facilitates a subblock to system-level test pre-use
methodology

e Increases Readable, Usability
e Decreases the complexity of writing a test
e Readable by software and system engineers

e Straight forward to implement all features of hardware
verification languages (HVLs).

e No additional costs for expensive EDA tools

e Major investment
e Planning tests up front
e Really should be doing this anyway
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Want to Know More? SynthWorks

Take SynthWorks' VHDL Testbenches and Verification Class

VHDL Testbenches and Verification 3 days
http://www.synthworks.com/vhdl testbench verification.htm
Engineers learn how create a transaction-based
verification environment based on bus functional models.
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SynthWorks VHDL Training SynthWorks

Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive vhdl introduction.htm
A design and verification engineers introduction to VHDL syntax,
RTL coding, and testbenches.
Our designer focus ensures that your engineers will be productive
in @ VHDL design environment.

VHDL Coding Styles for Synthesis 4 Days
http://www.synthworks.com/vhd| rtl synthesis.htm
Engineers learn RTL (hardware) coding styles that
produce better, faster, and smaller logic.

For additional courses see: http://www.synthworks.com
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