Accelerating Verification
Through Pre-Use of
System-Level,
Transaction-Based
Testbench Components

by
Jim Lewis
Director of Training, SynthWorks Design Inc
Jim@SynthWorks.com

DesignCon 2003 1 Copyright © SynthWorks Design Inc 2003

Author Biography SynthWorks

Jim Lewis, Director of Training, SynthWorks Design Inc.

Jim Lewis, the founder of SynthWorks, has seventeen years of
design, teaching, and problem solving experience. In addition to
working as a Principal Trainer for SynthWorks, Mr. Lewis does
ASIC and FPGA design, custom model development, and
consulting. Mr. Lewis is an active member of VHDL Standards
groups including, RTL Synthesis (IEEE 1076.6), Std_Logic
(IEEE 1164), and Numeric_Std (IEEE 1076.3). Mr. Lewis can
be reached at jim@SynthWorks.com, 1-503-590-4787, or
www.SynthWorks.com

Copyright © SynthWorks Design Inc. All rights reserved.

DesignCon 2003 2 Copyright © SynthWorks Design Inc 2003

Synth Works

Pre-Use of System Testbenches
e Approach

e Basics
e Traditional Approach

e System Only Test Approach

e Pre-Use Approach

e Transaction Based Testing
e Details

e Step by Step Overview of the Testbench Pieces

Getting the Slides: http://www.SynthWorks.com

DesignCon 2003 3 Copyright © SynthWorks Design Inc 2003

Design Under Test = MemIO SynthWorks

MemlIO Board

MemlIO
Cpulf UART | [« UART

IntCtrl Timer

DesignCon 2003 4 Copyright © SynthWorks Design Inc 2003

http://www.SynthWorks.com

Synth Works

DeSlgn Develop
Specification
Flow pecticar
VN * A
Code
Subblocks
|
v v
« Simulate Synthesize |
Subblocks Subblocks
< Simulate Synthesize |
Chip RTL Chip
l v
< Simulate
Chip Gate
\ Backannotated with
SDF delay information
DesignCon 2003 5 Copyright © SynthWorks Design Inc 2003

Testbench =

Synth Works

Code structure that allows waveforms to driven to the unit under
test and validates the results (visually or automatically)

Testbench =

Entity + Architecture(s)

library IEEE ;
use ieee.std logic 1164.all ;

entity TbCpuIlf is

Unit Under Test (UUT)
AKA DUT
Instantiation

end TbCpuIf ;
architecture tb of TbCpuIf is

R

begin
U CpuIf : CpuIlf
port map (. . .) ;

Stimulus Source
one or more processes
or instantiations

(CIk <= not Clk after 10 ns ;\

ResetProc : process

CpuProc : process

DesignCon 2003

- J

end tb ;

6 Copyright © SynthWorks Design Inc 2003

Synth Works

Traditional Approach: Subblock

e Write a separate, custom testbench for each subblock.
e Test all functionality in that subblock

e Testing CpulF Subblock

Cpu Stimulus Source 3 U_CpulF:CpulF (,,,);
Clock & Reset Source —

e Testing IntCtrl Subblock

IntCtrl Stimulus Source »| U_IntCtrl : IntCtrl (, ,,) ;
Clock & Reset Source —

e Test all other subblocks with separate, custom testbenches

DesignCon 2003 7 Copyright © SynthWorks Design Inc 2003

Traditional Approach: System SynthWorks

e Immerse the chip into a system environment

e Each interface in the system = one model (BFM and/or FFM)
e Test by running multiple test scenarios

e Re-validate each subblock in the system environment

:ThMemlO:
é:::::::::::::::::::::: TestCtrI ::::5:

UUT : MemlO { UartRx |-

Model : | Model |:
e Cpulf UART : — -
+] Clock and _ 3] UartTx g

Memlf SRAM

DesignCon 2003 8 Copyright © SynthWorks Design Inc 2003

Accelerating Verification SynthWorks

e Goal:
e Minimize test time without reducing test coverage

e Observations:
e Traditional subblock testbenches are used at the
beginning of testing and then abandoned.

e Subblock tests are re-validated at the system level

e If we can minimize the abandoned and duplicated work, we
can accelerate our verification effort.

DesignCon 2003 9 Copyright © SynthWorks Design Inc 2003

Proposal: System Only Tests SynthWorks

e No custom subblock testbenches
e Integrate all designs, and test at system level

e Hazard:
e Many designs being simultaneously debugged.

e When a bug is encountered, increased time may be spent
to isolate the error to a particular subblock.

e May have to fix the current bug before finding next bug.

e Increased time will be spent to run the subblock
simulations since all subblocks in the design are loaded.

e Conclusion:
e Not worth the risk. May actually increase time.

DesignCon 2003 10 Copyright © SynthWorks Design Inc 2003

Proposal: Pre-Use the System Testbench

e No custom subblock testbenches

e Use System Level Testbench for all testing
e Incrementally add and test subblocks

e Incrementally add system interface models

o Benefit
e One subblock being tested at a time
e Not writing subblock testbenches that get abandoned later
e No need to port subblock code to system level

e Conclusion:
e No additional risk since only testing one block at a time
e Speed up due to skipping custom subblock testbenches

DesignCon 2003 11 Copyright © SynthWorks Design Inc 2003

Pre-Use the System Testbench SynthWorks

e Step 1: Plan the tests first (Test Plan)

e Identify key driving interfaces required to get data into/out
of the design (CPU, PCI, ...)

e Plan to test these subblocks and testbench models first

TestCtrl ‘

UUT : MemlO
Cpulf UART

“[clock and |2
i IntCtrl Timer

Memilf

DesignCon 2003 12 Copyright © SynthWorks Design Inc 2003

Pre-Use: First Subblock Test SynthWorks

e Step 2: Code and Test Key Interfaces
e Cpulf (design) and CpuModel (testbench)

e Testing Cpulf using pieces of system-level testbench:

g e . UUT_ Mem|o
> : Cpulf

| Clock and
| Reset |

e Note all of the above functionality would be required in
some form in a subblock testbench.

DesignCon 2003 13 Copyright © SynthWorks Design Inc 2003
Pre-Use: First Subblock Test SynthWorks
e Step 2, Test 1 Continued: Cpulf + CpuModel
Test CPU UUT : MemlIO
Control] Model]
Cpulf

e Test Goal: Gain register IO access to other subblocks in chip
e Necessary to test other blocks

e Test Method: Write and read one register per internal block.

e Validation Plan
e Subblock: Visual check.
e System: Self-Checking. Expect to read back value written.

DesignCon 2003 14 Copyright © SynthWorks Design Inc 2003

Pre-Use: Concurrent Subblock Tests*

e Test 2A: Test Timer (design) and CpuModel (testbench)

Test || CPU | | UUT: MemlO

Control Model

Cpulf || Timer

e Test 2B: Test UART (design) and UartBfm (testbench)

Test | 1 CPU || UUT: MemlO | UartTx
Cpulf | [UART || [ariRy

Control Model

e Test 2C: Test MemlF (design) and SramModel (testbench)

Test | | CPU | | UUT: MemlO || mﬁgfll
Cpulf || Memlf

Control Model

* Note many tasks can be done by independent design teams.

De5|gnCon 2003 Copyright © SynthWorks Design Inc 2003

Pre-Use: Subblock Tests = System Tests

e Once all subblocks are integrated into the design, the
testbench becomes a full system test.

UUT : MemlO
Cpulf UART

Clock and |

IntCtrl Timer

Memlf

e Constraint to approach:
Order of design and testing must be planned.

DesignCon 2003 Copyright © SynthWorks Design Inc 2003

Transaction Based Testing SynthWorks

e A transaction based test programs interface actions.

e Without transaction based testing, wiggle signals:

begin
nAds
Addr
Data

Read
wait

CpuProc

AN N NN
| n

: process

on

= UART DIVISOR HIGH after tpd ;
= X"0000" after tperiod + tpd ;
= '0' after tpd;

'0' after tpd, 'l' after tperiod + tpd ;

Clk until nRdy = '0' and Clk = '1' ;

e With transaction based testing, do actions on interfaces:

begin

CpuProc

: process

CpuWrite (CpuRec, UART DIVISOR HIGH, X"0000") ;

DesignCon 2003

17 Copyright © SynthWorks Design Inc 2003

Transaction Based Testing SynthWorks

CpuWrite (CpuRec, UART DIVISOR HIGH, X"0000") ;
CpuWrite (CpuRec, UART DIVISOR LOW, X"000A") ;

CpuRead (CpuRec, UART STAT, DataOut) ;

e Key Features
e Program interface actions
e Procedure call replaces the detailed signaling
e No longer tied to the detailed signaling
e Test writer can focus on the tests rather than a HDL/HVL

DesignCon 2003

18 Copyright © SynthWorks Design Inc 2003

Transaction Based Testing SynthWorks

e Flexibility: How does the testbench change if change CPUs?

C-Ic;itsrtol sl %86 lew| UUT: MemlO
Cpulf || Timer
C-lc;ﬁtsrtol | 68K les| UUT: MemlO
Cpulf || Timer

e Only the models change, not the transactions

DesignCon 2003 19 Copyright © SynthWorks Design Inc 2003

Transactions & Subblocks SynthWorks

e Flexibility is important for subblock testing.
e What happens if a subblock is unavailable?
e What if CPU has not been selected?

e Replace Cpulf + CpuModel with CpulfModel

Test Cpulf UUT : MemlIO
Control Model ,
Timer

<P D

e Later, when Cpulf available, use CpuModel
e Note, only the models change, not the transactions.

Test
Control

.

CPU
Model

R

UUT : MemlO

DesignCon 2003

Cpulf

Timer

20

Copyright © SynthWorks Design Inc 2003

Summarv of ADDroaCh SynthWorks

e Transaction based testbench + planning =

e Possible to pre-use pieces of the system-level testbench to
test subblocks

o Benefit:
e Amount of development time decreases
e No longer need to develop subblock testbenches
e No longer need to port each test case to the system level
e |t automatically runs.

DesignCon 2003 21 Copyright © SynthWorks Design Inc 2003

Pre-Use of System Testbenches >/""¥erks

e Approach

e Basics
e Traditional Approach

e System Only Test Approach

e Pre-Use Approach

e Transaction Based Testing
e Details

e Step by Step Overview of the Testbench Pieces

DesignCon 2003 22 Copyright © SynthWorks Design Inc 2003

Testbench Structure SynthWorks

TestCtrl
Entity

TestCtrl

R A : __ R Test1
% -] > Architecture

-------------- Test2
-] Clock and iy Ly Architecture
] Reset [SR

TestN
Architecture

Key Features:
e Bus Functional Models (BFMs) implement interface signaling
e TestCtrl contains transactions to sequence BFMs
e Each test is a separate architecture of TestCtrl.

DesignCon 2003 23 Copyright © SynthWorks Design Inc 2003

Testbench Structure SynthWorks

e TbMemlO = Top level of testbench = Netlist = Test Harness

architecture Structural of TbMemIO is
-- Signal and Component Declarations go here

begin

U MemIO : MemIO port map (. . .) ; DUT

U TestCtrl : TestCtrl port map (. . .) ; Transaction
Source

U CpuModel : CpuModel port map (. . .) ;

U UartTxBfm : UartTxBfm port map (. . .) ; Bus Functional

Models
U UartRxBfm : UartRxBfm port map (. . .) ;
U Sraml : SRAM1 port map (. . .) ; FFM
U ClkReset : ClkReset port map (. . .) ; Clocks + Reset

end Structural ;

DesignCon 2003 24 Copyright © SynthWorks Design Inc 2003

Testbench Structure: TestCtrl

Synth Works

e TestCtrl contains transactions to interact/sequence each BFM

TestCtrl

: CpuTestProc
! CpuWrite(...)i
CpuRead(...)

UartTbTxProc :
i UartSend(...)i

{ UartTbRxProc
: UartCheck()E

N

" UartRxRec

—

‘ >

=+ Serial Data
“to DUT '

8 Serial Data

DesignCon 2003

25

Copyright © SynthWorks Design Inc 2003

TestCtrl Entity

Synth Works

entity TestCtrl is
generic (
tperiod Clk

CPU_STATUS MSG ON

: time :=
: std logic :=

10 ns ;
CPUTB_STATUS MSG OFF

O

)

port (
Clk : In std logic ;
nReset : In std logic ;

/harthRec : InOut UartTbRecType := InitTbUartTbRec ;)
UartRxRec : InOut UartTbRecType := InitTbUartTbRec ;
CpuRec : InOut CpuRecType := InitTbCpuRec ;

\?ntRec : InOut CpuRecType := InitTbCpuRec

)

/

end TestCtrl ;

Recommendation:

Keep TestCtrl entity in a separate file from the architecture(s).
Facilitates using multiple architectures.

DesignCon 2003

26

Copyright © SynthWorks Design Inc 2003

TestCtrl Architecture: Big Picture

Synth Works

architecture |UartRxl| of TestCtrl 1is

begin

(CpuTestProc

: processl

One or more processes for each

J

independent source of stimulus

lll;

CpuRead (.

\begin
wait until nReset =
‘Cqurite(. <)
o) B

Interface Stimulus is generated

end process ;

with one or more procedure calls

(UarthTxProc

8 processl

Each test is a separate

‘begin) architecture of TestCtrl
SyncTo (. DY (TestCtrl_UartRx1.vhd,
UartSend(. . .) ;| TestCtrl_UartRx2.vhd, ...)
end process ;
[UarthRxProc 3 process} A test developer Only needs
begin to understand TestCtrl and
VartCheck(. . .) ; not additional details of the
end process ; testbench approach
end Testl ;
DesignCon 2003 27 Copyright © SynthWorks Design Inc 2003
CpuTestProc : process -- TestCtrl UartRxl

-- Declarations left out

begin

wait until nReset =

CpuWrite (CpuRec,
CpuWrite (CpuRec,
CpuWrite (CpuRec,

PARITY EVEN &

CpuRead (CpuRec,
SyncTo (SyncIn =>

loop

CpuRead (CpuRec,
exit when (DataO(RX DATA VALID) =
wait for (100 * tperiod Clk)

end loop ;

CpuReadCheck (CpuRec, UART DATA,

end process ;

1o Start test after reset
UART DIVISOR HIGH, X"0000");)
UART DIVISOR LOW, X"000A");
UART CFGl, X"00" & "00" & > Configure
STOP BITS 1 & DATA BITS 8); UART
UART TX INT STAT, DataO);
Synch with
UartTxRdy, SyncOut => CpuRdy) ;
UartTbTxProc
UART RX INT STAT, DataO);
111) ; Poll for Data
- 1 ns ;
X"4A", true); |Check Data
Continue Polling and Checking Data

Testbench Structure: UartTxRec SvnthWorks
e Abstract Interface between TestCtrl and the UartTxBfm

i CpuTestProc § |- - g R
i CpuWrite(...i [' »: CPU Bus =2
CpuRead(...) i

UartTbTxProc
! UartSend(...)i

-» Serial Data
- to DUT '

UartTxBfm |

{ UartTbRxProc |
: UartCheck()E '

- Serial Data -
= from DUT

UartRxBfm &

DesignCon 2003 29 Copyright © SynthWorks Design Inc 2003

Record: UartTbRecType SynthWorks

type UartTbRecType is record
CmdRdy : std_logic ; } Control /
CmdAck : std logic ; Handshaking
Data : std logic vector (7 downto 0);
StatusMode : unsigned (3 downto 0) ;
TbErrCnt : unsigned (15 downto 0) ; Data
UartBaudPeriod : unsigned (31 downto 0) ; o Fields
NumDataBits : unsigned (2 downto 0) ;
ParityMode : unsigned (2 downto 0) ;
NumStopBits : std logic ; ~

end record ;

e Issues with records
e UartTxRec has two drivers (TestCtrl and UartTxBfm)

e All types are based std_logic to facilitate resolving
contention

DesignCon 2003 30 Copyright © SynthWorks Design Inc 2003

Initializing UartTxRec

Synth Works

e Initialize UartTxRec at entity ports to avoid contention:

port (

UartTxRec

: InOut UartTbRecType

[

= InitTbUartTbRec ;]
J

U

Y

Initialization

e Undriven fields are initialized to 'Z' using the following constant:

constant InitTbUartTbRec :

UartTbRecType : (

CmdRdy =S>RS
CmdAck => "%,
Data => (others => 'Z'),
StatusMode => (others => 'Z'),
TbErrCnt => (others => '0'),
UartBaudPeriod => to unsigned(. o) 5 . .
NumDataBits => UARTTB DATA BITS 8, Fields driven by
ParityMode -> UarRTTB PARITY EVEN, | UartTxBfm are
NumStopBits => UARTTB_STOP_BITS_1 in bold text
)
DesignCon 2003 31 Copyright © SynthWorks Design Inc 2003

Testbench Structure: Procedures >vnthWerks

e Procedures handshake data/sequencing to the BFMs
e Not a lot of magic in the procedures

CpuWrite(...)i
CpuRead(...) i

- Serial Data

- Serial Data
~from DUT

DesignCon 2003 32 Copyright © SynthWorks Design Inc 2003

procedure UartSend (SynthWorks

signal UartRec : inout UartTbRecType ;
Data : in std logic vector (7 downto 0) ;
IdleTime : in time := 0 ns ;
ErrorMode : in UartTb StatusModeType := UARTTB NO ERROR
) is
begin

-- Put Transaction into the Record
UartRec.Data <= Data ;
UartRec.StatusMode <= ErrorMode ;

-- Handshake with UartTxBfm
RequestAction (Rdy => UartRec.CmdRdy, Ack => UartRec.CmdAck) ;

-- Insert idle time between transactions
if (IdleTime > 0 ns) then

wait for IdleTime ; Basic Flow
end if ; e Put Transaction into Record
end UartSend ; e Handshake with Model
e Check Results
DesignCon 2003 33 Copyright © SynthWorks Design Inc 2003

Package: UartTbPkg SynthWorks

e All Constants, Types, and procedures that support UartTxBfm
get stored in the package UartTbPkg

library ieee ;
use jieee.std logic 1164.all ;

package UartTbPkg is

type UartTbRecType is record . . . ; Declare
constant InitTbUartTbRec : . . . ; Types,

5 o c Constants
procedure UartSend (. . .) ; and

. e . Subprograms

end UartTbPkg ;

pégkage body UartTbPkg is

 procedure UartSend (. . .) is\

begin Implement
e Subprograms

\end procedure ;)

end UartTbPkg ;

Testbench Structure: Models SynthWorks

e Perform interface specific signaling
e Sequencing/Data values determined by values in record

TestCtrl

UartSend(”.ﬁ

EUarthRxProc : Serial Data

UartCheck()E s f |

; ; from DUT

DesignCon 2003 3% Copyright © SynthWorks Design Inc 2003
SynthWorks

UartTxBfm

e Models execute transactions requested by TestCtrl

e Transactions in TestCtrl

UartSend (UartTxRec, X"4A") ;
UartSend (UartTxRec, X"4B") ;

e Resulting Waveforms produced by UartTxBfm

patactk (LU L LU L LU L
DataOut | 8 8 5 5 8 8 Sy
DuSERE Ry

Y 1

A S L S T R
Send X"4A" Send X"4B"

DesignCon 2003 36 Copyright © SynthWorks Design Inc 2003

entity UartTxBfm is UartTxBfm: Overview

port (. . .) ;

end UartTxBfm ;

architecture Model of UartTxBfm is
-- declarations not shown

begin
-- Create UART Clock
UartClk <= . . . ;
e

-- Implement Model Functionality
UartTxFunction : process

-- declarations not shown
begin

WaitF R t e o o o .
aitForRequest() Basic Elements of a BFM

e Input Processing

e Internal Resources
e Functionality

e Protocol Checks

-- Send Start Bit
-- Send Data Bits
-- Send Parity Bit

-- Send Stop Bit

. end process ; e Setup and Hold Checks
end Model ;
UartTxFunction : process UartTxBfm: Details

-- declarations not shown
begin

-- Signal end of Transaction and
-- Wait For next Transaction
WaitForRequest(. . .) ;
/ -- Send Start Bit A\
wait until UartClk = '1' ;
DataOut <= '0' ;

-- Send Data Bits
for i in 0 to 7 loop

wait until UartClk = '1'

DataOut <= UartRec.TxData (i) ;
end loop ; Functionalitv
-- Send Parity Bit e Wait for Transaction
wait until UartClk = '1°'

e Code Functionality
_- Send Stop Bit e Put return value(s) in

wait until UartClk = '1' ; Record
\ patadut <= '1' ; e Signal End of Transaction

DataOut <= UartRec.TxParity ;

end process ;

Testbench Details: Handshaking — =y"thWorks

e Handshaking between CPU Transactions and CpuModel is
done through CpuRec

i CpuTestProc | [+ e
CpuWrite(...)i [4 1 CpuModel
CpuRead(...) { |

: UartTbTxProc UartTx | ‘Serial Data
: UartSend(...): [% —» - : :
N Model : :

{ UartTbRxProc
i UartCheck()i

?Serial Data

DesignCon 2003 39 Copyright © SynthWorks Design Inc 2003

Handshaking SynthWorks

TestCtrl: UartTbTxProc UartTx
_Twait until nReset‘ WaitForRequest

.« e e Waiting . .
UartSend

Waiting . . . Waiting . . .|

Execute . . .

5 Transaction
WaitForRequest
Waiting . . ,y‘—“'——————__——_ Waiting . .
LE@rtSend\ c o o
RequestAction —
Waiting . . . ‘ —> Waiting . . .|

Execute .

Transaction

4_/— ‘WaitForRequest |

DE&signcon 2003 TO Copyrignt © SynthWorks Design Inc 2003

Waiting . . .\

Testbench Details: Handshaking — =y"thWorks

e CpuRec fields CmdRdy and CmdAck are used for handshaking.

1) TestCtrl: 2) TestCtrl: 4) TestCtrl: 7) TestCtrl:
Copy CmdRdy = 1 CmdRdy =0 Get Results &
Transaction Issue next Transaction

to Record /
CmdRdy) 5 g

! TestCtrl
L ¥
Record Fields : (j) ; /V@ L Shared

CmdAck l)__l |

n CpuModel

3) BFM: 5) BFM: 6) BFM:
CmdAck =0 Complete Transaction & CmdAck =1
Initiate Transaction Copy Results to Record

DesignCon 2003 41 Copyright © SynthWorks Design Inc 2003

Procedure RequestAction

Synth Works

procedure RequestAction (
signal Rdy : Out std logic ;
signal Ack : In std logic

) is

begin
-- Record contains new transaction
Rdy == Uall

-- Find Ack at the level '0'
if Ack /= '0' then

wait until Ack = '0' ;
end if ;

-- Prepare for Next Transaction
Rdy <= '0' ;

-- Transaction Done
wait until Ack = '1'
end procedure ;

DesignCon 2003 42

Copyright © SynthWorks Design Inc 2003

Procedure WaitForRequest SynthWorks

procedure WaitForRequest (

signal Clk : In std logic ;
signal Rdy : In std logic ;
signal Ack : Out std logic
) is
begin
-- Prepare for handshaking 3
Ack <z a0
End of
-- Allow Ack and Rdy to settle ™ | Previous Cycle
wait for 0 ns ; -- Ack Valid, Set Rdy
wait for 0 ns ; -- Rdy now valid -

(-~ Find Rdy high at a bus cycle boundary\ R
if Rdy /= '1l' then

wait until Rdy = '1!
wait until Clk = '1° > | Start of Cycle
end if ;

-- Model active and owns the record
Ack == Y09 p
end procedure ;

--43 --

Details Summary SynthWorks

e Using transaction tests + BFMs + a good set of abstractions,

e Facilitates a subblock to system-level test pre-use
methodology

e Increases Readable, Usability
e Decreases the complexity of writing a test
e Readable by software and system engineers

e Straight forward to implement all features of hardware
verification languages (HVLs).

e No additional costs for expensive EDA tools

e Major investment
e Planning tests up front
e Really should be doing this anyway

DesignCon 2003 44 Copyright © SynthWorks Design Inc 2003

Want to Know More? SynthWorks

Take SynthWorks' VHDL Testbenches and Verification Class

VHDL Testbenches and Verification 3 days
http://www.synthworks.com/vhdl testbench verification.htm
Engineers learn how create a transaction-based
verification environment based on bus functional models.

DesignCon 2003 45 Copyright © SynthWorks Design Inc 2003

SynthWorks VHDL Training SynthWorks

Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive vhdl introduction.htm
A design and verification engineers introduction to VHDL syntax,
RTL coding, and testbenches.
Our designer focus ensures that your engineers will be productive
in @ VHDL design environment.

VHDL Coding Styles for Synthesis 4 Days
http://www.synthworks.com/vhd| rtl synthesis.htm
Engineers learn RTL (hardware) coding styles that
produce better, faster, and smaller logic.

For additional courses see: http://www.synthworks.com

DesignCon 2003 46 Copyright © SynthWorks Design Inc 2003

http://www.synthworks.com/vhdl_testbench_verification.htm
http://www.synthworks.com/comprehensive_vhdl_introduction.htm
http://www.synthworks.com/vhdl_rtl_synthesis.htm
http://www.synthworks.com

