
VHDL-200X: The Future of VHDL

Jim Lewis, SynthWorks Design Inc. Jim@SynthWorks.com

Abstract

The VHDL-200X revision effort is currently finalizing
its Fast Track phase. This paper summarizes the new
features proposed to be released as part of this effort.

VHDL-200X is a comprehensive revision with a goal
to enhance VHDL to improve performance, modeling
capability, ease of use, verification capability, simulation
control, and the type system. At the same time, it strives to
maintain VHDL style, nature, and backward capability.
For many features the plan is to leverage concepts proven
useful by other industry efforts (such as PSL, System
Verilog, Vera, and E).

VHDL-200X Fast Track discussed in this paper is the
first phase of the VHDL-200X effort. VHDL-200X is a
continuing effort that will include at least one additional
set of revisions to the language.

1. Introduction
This paper gives a short overview and example of most

of the features being added in VHDL-200X Fast Track.
The features are not described in any particular order. If
you need more details on a particular feature, see the
VHDL-200X Fast Track webpage:
http://www.eda.org/vhdl-200x/vhdl-200x-ft. Note this is a
work in progress and may change up until balloting is
completed.

2. Integration of PSL
Assertions are a concise way to specify static and

dynamic (sequences of events) conditions. They can be
used to specify design and interface requirements that must
or must not happen. They can be checked either
dynamically during simulation or statically using formal
verification techniques. By validating their conditions with
the design, they add visibility into the design’s internal
state.

Rather than develop a VHDL specific syntax for
assertions, it was decided to integrate IEEE P1850 Property
Specification Language (PSL) into VHDL. As a result,
PSL declarations may be put into packages, and the
declarative part of an entity, architecture, or block
statement. PSL directives become a VHDL statement and
are permitted in any concurrent statement part. PSL vunits
become VHDL primary units and may include a context
clause prior to the vunit.

By integrating PSL, VHDL leverages a standard
assertion language that can be used with other HDLs and
verification languages and at the same time has the same
capabilities offered by a custom assertion language like
SystemVerilog assertions (SVA).

3. IP Protection
A mechanism to protect VHDL source code has been

added. This mechanism defines rules to encrypt the VHDL
source and the format of the encrypted VHDL file. The
syntax for specifying the encryption rules is identical to the
syntax used for Verilog/System Verilog to facilitate tool
development.

4. Type Generics & Generics on Packages
Generics have been extended to allow types and

subprograms to be passed as generics. Packages and
subprograms have been extended to allow generics to be
mapped to them. The following shows a generic package.

package MuxPkg is
 generic(type array_type) ;
 function Mux4 (
 Sel : std_logic_vector(1 downto 0) ;
 A : array_type ;
 B : array_type ;
 C : array_type ;
 D : array_type
) return array_type ;
end MuxPkg ;
package body MuxPkg is
 . . .
end MuxPkg ;

A generic package or subprogram must be instantiated
before it can be referenced or used. The following package
instantiations create packages that create the Mux4 for
std_logic_vector and unsigned.

library ieee ;
package MuxPkg_slv is new work.MuxPkg
 Generic map (
 array_type => ieee.std_logic_1164.std_logic_vector
) ;
package MuxPkg_unsigned is new work.MuxPkg
 Generic map (
 array_type=>ieee.numeric_std.unsigned
) ;

5. Context Unit
A context unit is a named primary unit that allows

groups of library and use clauses to be referenced by a
single name. An example of a context unit is shown below.

Context IEEE_CTX is
 use std.textio.all ;
 library ieee ;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
 use ieee.numeric_unsigned.all ;
end ;

Rather than being overwhelmed by a large group of
package references, a design unit can now reference a
group of packages by referencing a single context unit as
follows.

context work.IEEE_CTX ;

6. Composites with Unconstrained Arrays
Extend composites to allow arrays and records to

contain unconstrained arrays.

type std_logic_matrix is array (natural range <>)
 of std_logic_vector ;
. . .
signal A : std_logic_matrix(7 downto 0)(5 downto 0) ;
. . .
A(5) <= "111000" ; -- Accessing a Row
A(7)(5) <= '1' ; -- Accessing an Element
. . .
entity e is
port (
 A : std_logic_matrix(7 downto 0)(5 downto 0) ;
 . . .
) ;

type complex is record
 a : std_logic ;
 re : signed ;
 im : signed ;
end record ;
. . .
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

7. Fixed Point Packages
The new package, ieee.fixed_pkg, defines the types

ufixed and sfixed. To support fractional parts, negative
indicies are used. The range downto is required. The
whole number is on the left and includes the zero index.
The fractional part is to the right of the zero index.

type ufixed is array (integer range <>) of std_logic;
type sfixed is array (integer range <>) of std_logic;
. . .
constant A : ufixed (3 downto -3) := "0110100" ;
. . .
-- 3210 -1-2-3
-- IIII FFF
-- 0110 100 = 0110.100 = 6.5

A ufixed (or sfixed) addition/subtraction operation has
a full precision result (unlike numeric_std which does
modulo addition/subtraction – result is the same size as the
largest array operand).

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .

Y <= A + B ;

8. Floating Point Packages
The new package, ieee.fphdl_base_pkg, defines the

type float. The range downto is required. The sign bit is
the left most bit. The exponent contains the remaining bits
on the left downto and including the zero index. The
mantissa (fractional part) is to the right of the zero index.

type float is array (integer range <>) of std_logic;
. . .
signal A, B, Y : float (8 downto -23) ;
. . .
Y <= A + B ; -- float numbers must be same size

The floating point format can be visualized as follows:

Formatting Examples:
 00000000011111111112222
8 76543210 12345678901234567890123
S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127 (2**E’length-1)
F = Fraction has an implied 1 in leftmost bit

0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125 = 1/8

This example only shows a portion of the floating
point capability. More on the fixed and floating point
packages will be presented by David Bishop in the paper,

“Fixed- and floating-point packages for VHDL 2005 “ at
DVCon 2005.

9. Process (all)
Process (all) indicates that all signals that are read in

the process will implicitly be included on the sensitivity
list. The following example uses the keyword all instead of
including A, B, C, and MuxSel on the sensitivity list.

Mux3_proc : process(all)
begin
 case MuxSel is
 when "00" => Y <= A ;
 when "01" => Y <= B ;
 when "10" => Y <= C ;
 when others => Y <= 'X' ;
 end case ;
end process

10. Case Statement Updates
The rule requiring the case expression to have a locally

static subtype has been removed.
Case choices must still be locally static expressions,

however, the rules for locally static expressions have been
extended. Now locally static expressions are permitted to
contain implicit operators that produce composite results.
In addition, locally static expressions are permitted to
contain operators and functions defined in the packages,
ieee.std_logic_1164, ieee.numeric_std, ieee.numeric_bit,
ieee.numeric_unsigned, or ieee.numeric_bit_unsigned.

constant ONE1 : unsigned := "11" ;
constant CHOICE2 : unsigned := "00" & ONE1 ;
constant CHOICE3 : unsigned := "0" & ONE1 & "0";
constant CHOICE4 : unsigned := ONE1 & "00";
signal A, B : unsigned (3 downto 0) ;
. . .
process (A, B)
begin
 case A xor B is
 when "0000" => Y <= "00" ;
 when CHOICE2 => Y <= "01" ;
 when CHOICE3 => Y <= "10" ;
 when CHOICE4 => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

Although concatenation is specifically allowed, when
joining elements of type std_ulogic or std_logic a type
qualifier will be necessary as shown below to distinguish
between types std_logic_vector and std_ulogic_vector.
However, the code is still far simpler to both write and
understand than the previous rules. Note no type qualifier
would have been necessary if one of the objects being
concatenated were std_logic_vector.

signal A, B, C, D : std_logic ;
. . .

process (A, B, C, D)
begin
 case std_logic_vector'(A & B & C & D) is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

11. Case With Don’t Care
A new form of case has been created that allows use of

a don’t care character in the case choice. Note the don’t
care is not treated as a don’t care in the case expression.

process (Request)
begin
 case? Request is
 when "1---" => Grant <= "1000" ;
 when "01--" => Grant <= "0100" ;
 when "001-" => Grant <= "0010" ;
 when "0001" => Grant <= "0001" ;
 when others => Grant <= "0000" ;
 end case ;
end process ;

12. Conditional Expression Updates
Conditional expressions have been expanded to allow

bit and std_ulogic/std_logic as well as boolean results. In
addition overloading has been added to the logic operators
that yields a bit (std_ulogic) result when boolean and bit
(std_ulogic) are used together. As a result, the following
are all valid.

-- new
if (Cs1 and not nCs2 and Cs3 and Addr=X"A5")
-- backward compatible
if (Cs1='1' and nCs2='0' and Cs3='0' and Addr=X"A5")
if ((Cs1 and not nCs2 and Cs3)='1' and Addr=X"A5")
-- Mixed, new and old
if (Cs1 and nCs2='0' and Cs3 and Addr=X"A5")

The new overloading can also be used in signal
assignments.

Sel <= Cs1 and not nCs2 and Cs3 and Addr=X"A5" ;

13. Permit Expressions in Port Maps
Entity/component port associations have been

extended to allow expressions in a port map. The
expression eliminates the need to create an extra signal
assignment. Semantically an expression in a port map that
cannot be interpreted as a conversion function creates an
implicit signal and incurs a delta cycle delay (the same as
an explicit assignment would have).

U_E : E port map (A, Y and C, B) ;

14. Read Out Ports
The interface object rules have been updated to allow

an interface object of mode out to be read. Reading out
ports eliminates the need to create temporary internal
signals within an entity or subprogram to read signal output
ports and parameters. Allowing the reading of the driving
value will facilitate design and verification capabilities
such as referencing a ports driving value in an assertion.

15. Stop and Finish
The capability to stop a simulation with calls to

procedures stop or finish has been added. The procedures
stop and finish are bound to VHPI internal procedures.

16. Conditional & Selected Assignment
Conditional and selected assignment have been

enhanced so that they may be used in sequential code for
both signal and variable assignment. This proposal makes
the code for NS1 equivalent to the code shown for NS2.

NS1 <= FLASH when (FP = '1') else IDLE ;
. . .
if (FP = '1') then
 NS2 <= FLASH ;
else
 NS2 <= IDLE ;
end if ;

Selected assignment provides a more concise form of
case when only one data object is being targeted.

Process(clk)
begin
 wait until Clk = '1' ;
 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

 Yreg <= nReset and Mux ;
end process ;

17. If Expressions
If expressions have been added. An if expression is

similar to conditional assignment, however, it can be used
anywhere an expression is used. The following are
examples

Signal A : integer := 7 if GEN_VAL = 1, 15 ;

Y1 <= A if SelA, B if SelB, C if SelC, D ;
Y2 <= (A and B) if S = '1', (C and D) ;
Y3 <= (A if S, B) + (C if S, D) ;

N-Nary expressions have low precedence, so
parentheses are only required for Y3 above. N-Nary
expressions use a ‘,’ as a separator similar to selected
assignment. The expectation being that long term N-Nary
expressions will replace most applications of conditional
assignment.

18. TextIO enhancements
Overloaded read and write procedures have been

added for std_logic. For all bit based array types
(bit_vector, std_logic_vector, …) overloaded write, owrite,
hwrite, read, oread, and hread procedures have been
created.

A procedure tee has been created that write the line to
both a file (like writeline) and to the file OUTPUT (defined
in std.textio). A string constant named NL has been
defined. NL will contain the correct characters to produce
a carriage return and line feed.

A procedure sread has been created to read string
based tokens. It skips leading white space and reads
consecutive non-space characters up to its argument length
long. If less than argument length characters are read, then
the remaining characters of the argument will be filled with
blanks. A procedure swrite has been created to write
strings (so you will not longer need to use a type qualifier).

19. To_string functions
An overloaded function named to_string has been

created for all types. For all logic based array types the
functions to_ostring and to_hstring have been created. One
expected use of these functions is with the report statement.

assert (ExpectedVal = ReadVal)
 report "Expected Val /= Actual Val. Expected = " &
 to_string (Expected) & " Actual = " &
 to_string (ReadVal)
 severity error ;

The following example writes to the console using
VHDL’s built in write procedure.

write(Output, "%%%ERROR data value miscompare." &
 NL & " Actual value = " & to_hstring(Data) &
 NL & " Expected value = " & to_hstring(ExpData) &
 NL & " at time: " & to_string(now, right, 12)) ;

20. Sized Bit String Literals
Specification of bit string literals has been extended to

allow an optional size to be specified. Notation for signed
(S) and unsigned (U) literal values has been created. The
default literal is unsigned. If the string value does not
specify enough characters, the value is extended based on
the numeric value specified. If extra characters are
specified, it is an error if the removal of them changes the
value of the object. A few examples:

X"-X" = "----XXXX"
7X"F" = "0001111" -- unsigned fill with 0
7UX"F" = "0001111" -- same as above
7SX"F" = "1111111" -- signed replicate sign
7UX"0F" = "0001111" -- ok. Same value
7UX"8F" = "0001111" -- error. Value changed
7SX"8F" = "1001111" -- error. Value change.
7SX"CF" = "1001111" -- ok. Same value

21. Unary Reduction Operators
Unary versions of AND, OR, NOR, NAND, XOR, and

XNOR have been created for logic array types (bit_vector,
std_logic_vector, …). The operator is applied to each
element of the array and produces an element result (a
reduction operation). These operators will have the same
precedence as the miscellaneous operators (**, ABS, and
NOT). This proposal makes the code for Parity1
equivalent to the code for Parity2.

Parity1 <= xor Data and ParityEnable;

Parity2 <=
 (data(7) xor data(6) xor data(5) xor data(4) xor
 data(3) xor data(2) xor data(1) xor data(0))
 and ParityEnable ;

22. Array/Scalar Logic Operations
The binary logic operators have been overloaded to

produce an array (bit_vector, std_logic_vector, …) when
the one operand is an element (bit or std_ulogic) and the
other is an array. This proposal makes the Data1 and
Data2 equivalent.

Data1 <= A and Asel ;

GenLoop : for I in Data2’Range loop
begin
 Data2(I) <= A(I) and Asel ;
end generate;

Creation AND-OR logic is also greatly simplified:

DataOut1 <=
 (A and ASel) or (B and BSel) or
 (C and CSel) or (D and DSel) ;

Without these operators, a common mistake is to write
the above code as follows. Although functionally correct
when the select signals (Asel, …) are mutually exclusive, it
results in an inefficient hardware implementation.

Y <=
 A when ASel = '1' else B when BSel = '1' else
 C when CSel = '1' else D when DSel = '1' else
 (others => '0') ;

23. Hierarchical Reference
A missing feature from VHDL is the ability for an

entity (such as a testbench) to probe and force signals that
are defined in another part of the design hierarchy (such as
a tri-state enable output of the chip). Some simulator
vendors have created their own proprietary package of
probe and force functions. The standards group has
received donations and is creating a standard package
based on these.

24. Std Logic Family Updates
The package ieee.std_logic_1164 has been made part

of IEEE 1076 and is being updated as part of this effort.
The following actions have been done for the
std_logic_1164 package: uncomment xnor operators, add
shift operators, add logic reduction operators, add
array/scalar logical operators, add a match function (that
understands don’t care characters), add to_string functions,
and provide overloaded read and write procedures.

25. Numeric Standard Updates
The package ieee.numeric_std has been made part of

IEEE 1076 and is being updated as part of this effort. The
following actions have been done for the numeric_std
package: add logic reduction operators, add array/scalar
logical operators, add array/scalar addition operators, add a
match function, add functions to_x01 and is_x, add
to_string functions, and provide overloaded read and write
procedures.

26. Revision Plans Following Fast Track
VHDL-200X Fast Track effort is the first step in

updating VHDL. As soon as Fast Track revisions are
completed, the plan is to start the next set of revisions.

Some of the items that are planned to be part of the
revision following Fast Track are:
• Constrained Random Stimulus Generation
• Verification Data Structures such as associative arrays
• Queues, FIFOs, and Memories
• Object Orientation
• Direct C and Verilog/SystemVerilog Calls

With these additions, VHDL will become a full HDVL
(hardware design and verification language) and design
teams will no longer need to consider supplementing
VHDL with a separate verification language or go through

an expensive transition (in terms of training and
experience) to an alternate HDVL such as SystemVerilog.

27. Summary
The VHDL-200X Fast Track effort is planned to

become the standard IEEE 1076-2005. It is the intent to
bring both enhanced capability and simplified usage of the
language.

There is still much work to be done by the
VHDL-200X working group and still plenty opportunity to
participate. You can participate by requesting
enhancements, working as part of the standards group,
testing packages written by the standards group, lobbying
your EDA vendors to support the standard, and requesting
your company to financially support the VHDL LRM
editing. More details of each of these follow.

28. Requesting Enhancements
You might note that we may have missed the changes

you have been wishing for (no matter how simple or
obivious). To ensure we don’t miss them in the future,
make sure to submit them via the enhancement request link
on the webpage: http://www.eda.org/vhdl-200x.

Note also that the standards organization is a volunteer
run organization and people tend to work on what interests
them. If no one but you is interested in your suggestion, it
may sit on the back burner. Your only insurance is to
participate.

29. Participating In VHDL Standards
VHDL standards are IEEE standards. As a VHDL

community member it is both your right and responsibility
to join IEEE committees and participate in VHDL
standards. You can participate at different levels. As a
non-voting member, in which no organizational
membership is required, you can join the working group
email reflectors, attend teleconferences, attend in person
meetings and participate in all discussions. To have an
offical vote on issues, you must become a voting member.
To learn more about VHDL standards see the following
websites.

EDA Standards: http://www.eda.org
VHDL-200X: http://www.eda.org/vhdl-200x
DASC: http://www.eda.org
RTL Synthesis: http://www.eda.org/siwg.

30. Funding VHDL Standards
Much of the work done on a standards project is done

on a volunteer basis. This includes maintaining email
reflectors and webpages, writing and editing proposals, and
participation in technical meetings (both in person and
teleconferences).

The task of integrating all of the proposals into
changes to the LRM (IEEE 1076 standard) and editing the
LRM is undertaken by a single, paid technical editor. This

person is a VHDL expert with deep knowledge. Due to the
amount of time this effort takes, this work is done by a paid
consultant.

Unfortunately none of our working group funding
comes from IEEE or IEEE-SA. Some of the money will be
coming from EDA vendors, however, we are seeking
industry and government sponsors for the balance of the
funding. If your organization can help with funding, please
contact the VASG chair, Steve Bailey, at
stephen@srbailey.com.

31. Vendor Support
Writing a standard is the first step toward getting new

features in the language. The next step is vendor
implementation. Supporting a standard is a business
decision. To make this an easy decision for the vendors,
please be vocal in letting them know that you want them to
support the new features of IEEE 1076. Often the most
effective person to pass this information to the vendors is
the person who is purchasing your EDA tools. A
particularly effective time to do this is when buying new
licenses or renewing your current licenses.

32. Acknowlegements
This paper is based on the hardwork of people

supporting the VHDL-200X effort. Numerous proposals
were either written by or refined by John Ries. David
Bishop developed the fixed and floating point packages as
well as updated numerous of the other packages. Peter
Ashenden wrote the generic enhancement proposal and is
the LRM editor. Erich Marschner worked on the PSL
integration. Deepak Pant and Ajayhash Varikat worked on
the IP protection. Ryan Hinton worked on the composites
of unconstrained arrays proposal. Steve Bailey has chaired
the group responsible for the VHDL-200X effort.

33. References
David Bishop, “Fixed- and floating-point packages for

VHDL 2005”, to be published in DVCon 2005.
Ryan Hinton and Brad Davis, “Data abstraction is the

beginning of algorithm abstraction”, to be published in
DVCon 2005

VHDL-200X proposals webpage, http://www.eda.org/
vhdl-200x/vhdl-200x-ft/proposals/proposals.html

34. About the Author
Jim Lewis, the founder of SynthWorks, has nineteen

years of design, teaching, and problem solving experience.
In addition to working as a VHDL course developer and
trainer for SynthWorks, Mr. Lewis does ASIC and FPGA
design, custom model development, and consulting. Mr.
Lewis is an active member of IEEE 1076 / VHDL-200X
standards group and is the team leader of the Fast Track
effort. He is also an active member of the RTL Synthesis
(IEEE 1076.6). Mr. Lewis can be reached at
jim@SynthWorks.com

