VHDL 200X Fast Track
New Features being Standardized

By Jim Lewis

SynthWorks VHDL Training

Team Leader VHDL-200X Fast Track
Jim@SynthWorks.com

MARLUG - Mid-Atlantic Region Local Users Group
ANNUAL CONFERENCE - OCTOBER 5, 2004
Johns Hopkins University Applied Physics Lab — Laurel, MD

VHDL-200X, Goals / What SynthWorks

e Enhance/update VHDL to improve performance, modeling
capability, ease of use, verification features, simulation
control, and the type system.

e Maintain VHDL style, nature, and backward compatibility

e Leverage industry efforts

e Spring board off of efforts by PSL assertions, Verisity E,
Vera, and SystemVerilog

e Focus on features sponsored and prototyped by both users
and vendors to ensure quick adoption and that features are
both cool and useful.

Caution: All activities here are work in progress.

MARLUG October 5, 2004 2 Copyright © SynthWorks 2004

VHDL-200X, Organization SynthWorks

e VHDL-200X is being developed in a time phased effort.

e The first phase is called Fast Track and is intended to be
completed in Mid 2005

e The remainder of the work will be sorted in a priority basis
and will be developed in one or more following revisions.

e Work is divided into several sub-groups:
e Modeling and Productivity
e Assertions
e Testbench / Verification
e Data Types and Abstractions
e Performance
e Environment

MARLUG October 5, 2004 3 Copyright © SynthWorks 2004

VHDL-200X, Participation SynthWorks

e Observer Participants

e By IEEE rules, anyone (including non-IEEE members) with
a vested interest may attend meetings, join reflectors, and
comment on standards activity.

e VVoting Members
e Development: Member of IEEE-CS + DASC + IEEE
e Balloting: Member of IEEE-SA

e Your input can make a difference. Participate.
e See http://www.eda.org/vhdl-200x for details
e Join main + individual reflectors

e Not all tasks are standards tasks are LRM writing
e Some simple tasks: review of new packages

MARLUG October 5, 2004 4 Copyright © SynthWorks 2004

VHDL-200X, Sponsors SynthWorks

o IEEE
e IEEE-CS: IEEE Computer Society
e DASC: Design Automation Standards Committee
e VASG: VHDL Analysis and Standardization Group

e VHDL-200X: Current Development Work

e IEEE-SA: IEEE Standards Association
e Coordinates balloting on all IEEE Standards.

Websites:
IEEE: http://www.ieee.org
DASC: http://www.dasc.org
VASG: http://www.eda.org/vasg
Accellera: http://www.accellera.org

MARLUG October 5, 2004 5 Copyright © SynthWorks 2004

VHDL-200X, Financials $$% SynthWorks

e IEEE/IEEE-SA do not fund standards projects
e They provide infrastructure for balloting and legal issues

e Most of the work is done by volunteers
e Maintaining of reflectors, webpages
e Writing and editing proposals
e Technical meetings

e Current plan is to hire an LRM editor
e For this we need funding ($200K - $300K over 3 years)
e Some money will come from EDA vendors,
e But we will need other sources ...
e Contact Stephen Bailey (stephen@srbailey.com)

MARLUG October 5, 2004 6 Copyright © SynthWorks 2004

Vendor Support of Standards SynthWorks

e Business view of supporting EDA standards
e Supporting a feature of a standard is an investment
e Feature support is user driven
e If you don't ask, they don't support it.

e As a result, if you see new features you want to use,
e tell your EDA vendor
e tell your friends (who can then tell their vendors)

MARLUG October 5, 2004 7 Copyright © SynthWorks 2004
VHDL-200X-FT: Proposals SynthWorks
e Unary Reduction Operators e Context Clause
e Array/Scalar Logic Operators e Simplified if expressions+
e to_string, to_hstring, ... e Process Comb, Process_latch,
e hwrite, owrite, ... hread, oread Process_ff
e Hierarchical references of signals @ Aggregates with slices
e Sized bit string literals e Simplified Case Statements
e Nnary Expressions e Don't Care in a Case Statement
e Conditional and Selected e Fixed Point Packages
assignment in sequential code e Floating Point Packages
e Expressions in port maps e Type Generics
e Read out ports e Generics on Packages
e Add Stop, Finish, and Restart as e PSL
callable routines e |P Protection / Encryption
e Unconstrained arrays of e Std_logic_1164 Updates
unconstrained arrays e Numeric_Std Updates

e Records of unconstrained arrays

Much of VHDL's cumbersome syntax issues can be fixed

Unary Reduction Operators SynthWorks

e Define unary AND, OR, XOR, NAND, NOR, XNOR

function "and" (anonymous: BIT VECTOR) return BIT;
function "or" (anonymous: BIT VECTOR) return BIT;
function "nand" (anonymous: BIT VECTOR) return BIT;

(

(

(

function "nor" anonymous: BIT VECTOR) return BIT;
function "xor" anonymous: BIT VECTOR) return BIT;
function "xnor" anonymous: BIT_VECTOR) return BIT;

e Calculating Parity with reduction operators:

Parity <= xor Data ;

e Calculating Parity without reduction operators:

Parity <= Data(7) xor Data(6) xor Data(5) =xor
Data(4) xor Data(3) xor Data(2) =xor
Data(l) xor Data(0) ;

MARLUG October 5, 2004 9 Copyright © SynthWorks 2004

Array / Scalar Logic Operators SynthWorks

e Proposal: Create symmetric array/scalar overloading of all
binary logic operators for bit_vector, std_logic_vector, ...

function "and" (anonymous: BIT VECTOR; anonymous : BIT)
return BIT VECTOR;

function "and" (anonymous: BIT; anonymous : BIT VECTOR)
return BIT VECTOR;

e Application

signal ASel, BSel, CSel, DSel : bit ;
signal Y, A, B, C, D : bit vector(3 downto 0) ;

Y <= (A and ASel) or (B and BSel) or
(Csel and C) or (DSel and D) ;

MARLUG October 5, 2004 10 Copyright © SynthWorks 2004

Array / Scalar Logic Operators

e In this context, the following code implies the hardware below:

signal ASel std logic ;
signal T, A :

std logic_vector (3 downto 0)

.
’

T <= (A and ASel) ;

SynthWorks

AO) >— T(0) The value of ASel will replicated to
B form an array.
A) O_>_ T(1) When ASel = '0', value expands to "0000"
When ASel ='1', value expands to "1111"

AB) T(3
ASel -;:[:>_ ©)

MARLUG October 5, 2004 11

Copyright © SynthWorks 2004

To String, To HString, ...

SynthWorks

e Report requires string values. To_string would make report more useful:

assert (ExpectedVal = ReadVal)

report "Expected Val /= Actual Val.
to_string (Expected) & "

to_string (ReadVal)
severity error ;

Expected = " &
Actual = " &

e Furthermore, to_string permits a usage of vhdl-93 write:

write (<file handle>, <string>)

write (Output, "$%$%$ERROR data value miscompare." &
NL & " Actual value = " & to_hstring(Data) &
NL & " Expected value = " & to_hstring(ExpData) &
NL & " at time:

" & to_string(now, right, 12))

.
’

MARLUG October 5, 2004

12

Copyright © SynthWorks 2004

To _String, To HString, ... SynthWorks

e Support hex, octal, binary, and decimal for all types (integer, bit_vector, ...)

function to_string (

VALUE : in integer;
JUSTIFIED : in SIDE := RIGHT;
FIELD : in WIDTH := 0

) return string ;
function to_hstring () return string ;
function to_ostring () return string ;
function to_bstring (. . .) return string ;

()

return string ;

function to_dstring

MARLUG October 5, 2004 13 Copyright © SynthWorks 2004
Hwrite, Dwrite, Owrite, Bwrite SynthWorks
e Support write with radix, similar to std_logic_textio, for all types

procedure hwrite (
Buf : inout Line ;
VALUE : in integer;
JUSTIFIED : in SIDE := RIGHT;
FIELD : in WIDTH := 0

)

procedure dwrite (. . .) ;

procedure owrite (. . .) ;

procedure bwrite (. . .) ;

e Work inspired by Synopsys' donation of std_logic_textio to IEEE for IEEE
1164 efforts.

e Goal to stay compatible with std_logic_textio

MARLUG October 5, 2004 14 Copyright © SynthWorks 2004

Hread, Dread, Oread, Bread SynthWorks

e Support write with radix, similar to std_logic_textio, for all types

function hread (
Buf : inout Line ;
VALUE : out integer;
Good : out boolean
)
function dread (. . .) ;
function oread (. . .) ;
function bread (. . .) ;
MARLUG October 5, 2004 15 Copyright © SynthWorks 2004
Hierarchical Reference SynthWorks

e Permanent connection to object by expanding upon alias.
e Mode specifies in (read), out (drive), or inout
e Path to signal specified in the format of path_name (see attribute
'path_name)
e Currently objects envisioned to be signals, constants (and hence
generics), and shared variables

Alias addr : std logic_vector signal is
out ":tb:u uut:u mem ctrl:addr" ;

Alias addr : std_logic_vector (7 downto 0) signal is
out ":tb:u uut:u mem ctrl:addr" ;

Alias data : std_logic_vector (7 downto 0) signal is
inout ":tb:u uut:u mem ctrl:data" ;

e Still have problems to solve to make this a reality.

MARLUG October 5, 2004 16 Copyright © SynthWorks 2004

Hierarchical Reference * SynthWorks

e Near Term Alternative, Package based approach

Drive (
source_signal : IN STRING ;
destination _signal : IN STRING ;
delay : IN TIME := 0 ns ;
delay mode : IN delay mode_ type := DEPOSIT;
verbose : IN integer) ;
Probe (
source_signal : IN STRING ;
destination_signal : IN STRING ;
verbose : IN integer) ;

e " Inspired by donations from Mentor (Signal Spy) and Cadence (NCMirror)

MARLUG October 5, 2004 17 Copyright © SynthWorks 2004

Hierarchical Reference® SynthWorks

e Temporary read / write signal with procedures

procedure signal force (

destination_signal : IN STRING;

force value : IN STRING;

delay : IN TIME := 0 ns ;

delay mode : IN delay mode type := DEPOSIT;

cancel period : IN DELAY LENGTH := 0 ns ;

delta_event : IN BOOLEAN := FALSE);
procedure signal release (

destination _signal : IN STRING;

verbose : IN integer) ;

get_value (
destination signal : IN STRING;
verbose : IN integer) ;

e *Work inspired by donations from both Mentor and Cadence

MARLUG October 5, 2004 18 Copyright © SynthWorks 2004

Sized Bit Strinqg Literals SynthWorks

e Currently hex bit string literals are a multiple of 4 in size
X"AA" = "10101010"

e Allow specification of size (and decimal bit string literals):

7X"7F" = "1111111"
7D"127" = "1111111"

e Allow specification of signed vs unsigned (for extension of value):

9UX"F" = "000001111" Unsigned 0 fill
O9SX"F" = "111111111" Signed: left bit = sign
OX"F" = "0000OO1111" Defaults to unsigned

e Allow Replication of X and Z

TX"XX" = "XXXXXXX"
TX"ZZ" = "ZZZZZZZ"

MARLUG October 5, 2004 19 Copyright © SynthWorks 2004
N-Nary Expressions SynthWorks
e Similar to conditional signal assignment ...

Y<= A and B if S = '1l'", C and D ;
Y <= (A and B) if S = "'1', (C and D) ;

e ... except it is an expression:
Y<=A and (B if S = "'1', C) and D ;

e And it can be used anywhere an expression can:

Signal A : integer := 7 if GEN VAL =1, 15 ;

with MuxSel select
Y <= A if Asel='1’, B when ‘0',
C if Csel='1’, D when ‘1l’,
‘X’ when others ;

MARLUG October 5, 2004 20 Copyright © SynthWorks 2004

Allow Conditional Assignments ~ SynthWorks
for Signals and Variables in a Process

e Statemachine code:

if (FP = '1l') then
NextState <= FLASH ;
else
NextState <= IDLE ;
end if ;

e Simplification:

NextState <= FLASH when (FP = 'l') else IDLE ;

e Note: the new part is doing this in a process

e Also support conditional variable assignment:

NextState := FLASH when (FP = 'l') else IDILE ;
MARLUG October 5, 2004 21 Copyright © SynthWorks 2004
Allow Selected Assignments SynthWorks

for Signals and Variables in a Process

signal A, B, C, D, Y : std logic ;
signal MuxSel : std logic_vector(l downto 0) ;

Process (clk)

begin
wait until Clk = '1' ;
with MuxSel select
Mux :=
A when "00",
B when "O01",
C when "10",
D when "11",

'X' when others ;

Yreg <= nReset and Mux ;

end process ;

MARLUG October 5, 2004 22 Copyright © SynthWorks 2004

Signal Expressions in Port Maps SynthWorks

U_UUT . UuT
port map (A, Y and C, B) ;

e Needed for PSL and OVL to avoid creating an extra signal assignment

e Semantics of expressions in port map:
e convert to an equivalent concurrent signal assignment

e if expression is not a single signal, constant, or does not qualify as a
conversion function, then it will incur a delta cycle delay.

e Also facilitates mapping bits to arrays

U_Decoder : Decoder U_Decoder : Decoder
port map (port map (
Addr => A2 & Al & AO, Addr => (A2, Al, A0),
Sel => Sel Sel => Sel
))
MARLUG October 5, 2004 23 Copyright © SynthWorks 2004
Read Output Ports SynthWorks

e Read output ports
e Value read will be locally driven value

e Assertions need to be able to read output ports

MARLUG October 5, 2004 24 Copyright © SynthWorks 2004

Stop and Finish SynthWorks

e Currently one way to stop a simulation is:
Report "Just Kidding. Test Passed" Severity Failure ;

e Which produces the message:

** Failure: Just Kidding. Test Passed
Time: 1060 us Iteration: 4 Instance:

e Create procedures STOP and FINISH that either bind to VHPI calls or
internal simulator routines.

-- Stop a simulation in the manner that breakpoint does
procedure STOP;

-- Terminate a simulation and exit to the simulator prompt
procedure FINISH;

MARLUG October 5, 2004 25 Copyright © SynthWorks 2004

Arrays of Unconstrained Arrays SynthWorks

type std _logic_matrix is array of std logic vector ;

-- constraining in declaration
signal A : std logic matrix(7 downto 0). (5 downto 0) ;

-- Accessing a Row
A(5) <= "111000" ;

-- Accessing an Element
A(7).(5) <= "1'" ;

entity e is
port (
A : std logic _matrix (7 downto 0). (5 downto 0) ;

MARLUG October 5, 2004 26 Copyright © SynthWorks 2004

Records of Unconstrained Arrays SynthWorks

type complex is record
a : std logic ;
re : signed ;
im : signed ;

end record ;

-- constraining in declaration
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

MARLUG October 5, 2004 27 Copyright © SynthWorks 2004
Context Clause Design Unit SynthWorks
Problem:

Currently users have to specify a large collection of packages before an
entity and there is no way to abstract this.

library ieee ;
use ieee.std logic 1164.all ;
use ieee.numeric_std.all ;
use std.textio.all ;

e This problem will continue to grow with additional standards packages
e Floating Point
e Unsigned math with std_logic_vector
e Assertion Libraries

MARLUG October 5, 2004 28 Copyright © SynthWorks 2004

Context Clause Design Unit SynthWorks

e Create a named context design unit that references packages to use

Context projectl Ctx is
library ieee ;
use ieee.std logic_1164.all;
use ieee.numeric_std.all ;
use std.textio.all ;
use ieee.numeric_unsigned.all ;

library Lib P1 ;
use Lib P1.PlPkg.all ;
use Lib P1.Pl1 Defs.all ;

end ;

e Reference named contexts:

Library Lib P1 ;
context Lib Pl.projectl_ctx ;

MARLUG October 5, 2004 29 Copyright © SynthWorks 2004

Simplified If Expressions+ SynthWorks

e Enable simplified conditional expressions
e if, elsif, wait until, when, while

if (Csl and not nCs2 and Cs3 and Addr=X"A5") then
if (Csl and nCs2='0' and Cs3 and Addr=X"A5") then
if (not nWe) then

e Be consistent with std_ulogic, so active low is represented with "not nCs2"

Sel <= Csl and not nCs2 and Cs3 ;

e Backward compatible with current VHDL syntax:

if (Csl='l' and nCs2='0' and Cs3='0' and Addr=X"A5") then
if ((Csl and not nCs2 and Cs3)='1l" and Addr=X"A5") then
if nWe = '0' then

MARLUG October 5, 2004 30 Copyright © SynthWorks 2004

Simplified If Expressions+ SynthWorks

e Implementation Part 1:
At top level of an conditional expression, if the resulting expression is not
boolean, call the function condition? to convert to boolean (if it exists)

e With Part 1: the following will work:

if (Csl and not nCs2 and Cs3) then

e Intended types to create overloading for are bit types (bit, std_ulogic)

e Implementation Part 2:
Create overloaded logic operators that allow boolean to be used with
bit/std_logic and result in bit/std_ulogic

e This promotes true to '1' and false to '0' to maintain accuracy
e This enables the following two examples:

if (Csl and not nCs2 and Cs3 and Addr=X"A5") then
DevSell <= Csl and not nCs2 and Cs3 and Addr=X"A5" ;

MARLUG October 5, 2004 31 Copyright © SynthWorks 2004

Process Comb, ... SynthWorks

e Process Comb
e Indicates a process only contains combinational logic
e Automatically create a sensitivity list with all signals on sensitivity list

e If process creates a latch or register, synthesis tools shall generate an
error and not produce any netlist results.

Mux3 proc : process_comb

begin
case MuxSel is
when "00" => Y <= A ;
when "01" => Y <= B ;
when "10" => Y <=C ;
when others => Y <= 'X' ;

end case ;
end process

e Benefit: Reduce errors in creating combinational logic, particularly,
statemachines.

MARLUG October 5, 2004 32 Copyright © SynthWorks 2004

Process Latch, Process ff SynthWorks

e Process_latch
e Indicates all signal assignments in a process create only latches
e Automatically creates a sensitivity list with all signals read in the process
on the sensitivity list

e If the process creates combinational logic or a register, synthesis tools
shall generate an error and not produce any netlist results.

e Process ff
e Indicates all signal assignments in a process create only registers
e Automatically creates a sensitivity list with the clock signal and any
asynchronous signals on the sensitivity list.
e If the process creates combinational logic or a latch, synthesis tools
shall generate an error and not produce any netlist results.

MARLUG October 5, 2004 33 Copyright © SynthWorks 2004
Slices in Array Aggregates SynthWorks
e Allow slices in an Array Aggregate

Signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

(CarryOut, ¥) <= ('0' & A) + ('0' & B) ;

e Currently this would have to be written as:

(CarryOut, Y (7) ,Y(6),¥(5),¥(4),¥(3),¥(2),¥(1),Y(0))
<= ('0' & A) + ('0' & B) ;

MARLUG October 5, 2004 34 Copyright © SynthWorks 2004

Simplified Case Statement SynthWorks

e Allow non-scalars to be locally static
e Integrate packages 1164, 1076.2, and 1076.3 into 1076
e Make the types and operands in these packages locally static.

signal A, B : unsigned (3 downto 0) ;

process (A, B)
begin
case A xor B is

when "0000" => Y <= "00" ;
when "0011" => Y <= "01" ;
when "0110" => Y <= "10" ;
when "1100" => Y <= "11" ;
when others => Y <= "XX" ;
end case ;
end process ;
MARLUG October 5, 2004 35 Copyright © SynthWorks 2004
Simplified Case Statement SynthWorks

e In some cases will still need a type qualifier, but not a constrained type

e When both std_logic 1164 and numeric_std are visible, concatenating
std_logic objects can result in std_logic_vector, signed, or unsigned.

signal A, B, C, D : std logic ;

process (A, B, C, D)
begin
case std logic_vector'(A & B & C & D) is
when "0000" => Y <= "00" ;

when "0011" => Y <= "01" ;
when "0110" => Y <= "10" ;
when "1100" => Y <= "11" ;
when others => Y <= "XX" ;

end case ;
end process ;

MARLUG October 5, 2004 36 Copyright © SynthWorks 2004

SynthWorks

Case With Don't Care

e Create new form of case: Case?
e Allow use of '-' in targets provided targets are non-overlapping

-- Priority Encoder
process (Request)
begin
case Request is
when "1---" => Grant <= "1000"
when "01--" => Grant <= "0100"
when "001-" => Grant <= "0010"
when "0001" => Grant <= "0001"
when others => Grant <= "0000"
end case ;
end process ;
MARLUG October 5, 2004 37 Copyright © SynthWorks 2004

Fixed Point Types SynthWorks

e Definitions in package, ieee.fixed_pkg.all

type ufixed is array (integer range <>) of std logic;
type sfixed is array (integer range <>) of std logic;

e For downto range, whole number is on the left and includes 0.
ufixed (3 downto -3) := "0011010000" ;

constant A :

3210 -3
IITIFFF
0110100 = 0110.100 = 6.5

e Math is full precision math:

ufixed (3 downto -3) ;
ufixed (4 downto -3) ;

signal A, B
signal Y

Y<=A+ B ;

MARLUG October 5, 2004 38 Copyright © SynthWorks 2004

Floating Point Types SynthWorks

e Definitions in package, ieee.fixed pkg.all
type fp is array (integer range <>) of std logic;

e Format is Sign Bit, Exponent, Fraction
signal A, B, Y : fp (8 downto -23) ;

8 76543210 12345678901234567890123
S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127

F = Fraction has an implied 1 in leftmost bit

0 10000000 000000000000OQOO000000000 = 2.0

0 10000001 10100000000000000000000 = 6.5

0 01111100 00000000000000000000000 = 0.125 = 1/8

Y <=A + B ; -- FP numbers must be same size
MARLUG October 5, 2004 39 Copyright © SynthWorks 2004
Type Generics + SynthWorks

Generics on Packages

e Packages get instantiated to customize them for a particular type

MARLUG October 5, 2004 40 Copyright © SynthWorks 2004

PSL SynthWorks

e PSL will be incorporated directly into VHDL
e Define and Specify properties in VHDL

MARLUG October 5, 2004 41 Copyright © SynthWorks 2004

IP Protection and Encryption SynthWorks

e Makes IP model encryption methodology independent of EDA tool vendors

MARLUG October 5, 2004 42 Copyright © SynthWorks 2004

Std Logic 1164 Updates SynthWorks

e Goals: Enhance current std_logic 1164 package

e A few items on the list are:
e Uncomment xnor operators
e Add shift operators for vector types
e Add logical reduction operators
e Add array/scalar logical operators
e Match Function

e Provide text I/O package for standard logic (similar to
Synopsys' std_logic_textio)

e See also DVCon 2003 paper, "Enhancements to VHDL's
Packages" which is available at:
http://www.synthworks.com/papers

MARLUG October 5, 2004 43 Copyright © SynthWorks 2004
Numeric Std Updates SynthWorks
e Goals:

e Enhance current numeric_std package.
e Unsigned math with std_logic_vector/std_ulogic_vector

e A few items on the numeric_std list are:
e Logic reduction operators
e Array / scalar logic operators
e Array / scalar addition operators
e TO XO01, IS_X for unsigned and signed
e TextlO for numeric_std

MARLUG October 5, 2004 44 Copyright © SynthWorks 2004

Resulting Operator Overloading ~ SynthWorks

Operator Left Right Result
Logic TypeA TypeA TypeA
Numeric Array Array Array¥*
Array Integer Array¥*
Integer Array Array¥*
Logic, Addition Array Std_ulogic Array
Std _ulogic Array Array
Logic Reduction Array Std _ulogic
Notes:
Array = std ulogic_vector, std logic_vector, bit vector
unsigned, signed,
TypeA = boolean, std logic, std ulogic, Array
For Array and TypeA, arguments must be the same.
* for comparison operators the result is boolean

MARLUG October 5, 2004 45 Copyright © SynthWorks 2004

VHDL-200X, Summary SynthWorks

e Fast Track work is the first phase of VHDL-200X
e Expected completion of current work is mid-2005.

e Lots of more work to be done

e Goal: Transition VHDL into a full Hardware Description
and Verification Language (HDVL).

e Integrate good features of Vera, SystemC, specman E,
and SystemVerilog

e End result
e Get full verification capabilities
e Language consistency of VHDL
e Not necessary to use other languages or switch

e VHDL-200X = 200 X better than ...

MARLUG October 5, 2004 46 Copyright © SynthWorks 2004

Appendix VHDL-200X, Subgroups SynthWorks

e The primary intent of this presentation was to cover near term work that is
being delivered with the VHDL-200X fast track.

e This appendix covers the charter of the following subgroups:
e Performance
e Modeling and Productivity
e Testbench / Verification
e Assertions
e Data Types and Abstractions
e Environment

e Each VHDL-200x subgroup has its own webpage, reflector, and team
leader

e To be fully vested in the process, one would have to sign up for the
VHDL-200X reflector and the reflector of each subgroup.

MARLUG October 5, 2004 47 Copyright © SynthWorks 2004

VHDL-200X, Performance SynthWorks

e Goals:

e Make language changes that facilitate enhanced tool
performance, primarily for, but not only for simulation.

MARLUG October 5, 2004 48 Copyright © SynthWorks 2004

VHDL-200X, Modeling and Productivity

e Goals:
e Improve designer productivity through
e enhancing conciseness,
e simplifying common occurrences of code, and
e improving capture of intent.

e Facilitate modeling of functionality that is currently difficult
or impossible.

e A few items on the list are:
e Case/lf Generate
e Pick up where fast track leaves off

DesignCon 2004 49

VHDL-200X, Testbench and Verification

e Goals:
e Ease the job of the verification engineer.
e Give VHDL similar functionality to Vera and Verisity E.

e A few items on the list are:

e Constrained Random stimulus generation with optional
and dynamic weighting

e Associative arrays
e Queues/FIFOs
e Memory implementation and loading & dumping

DesignCon 2004 50

VHDL-200X, Assertions SynthWorks

e Goals:

e Define support for temporal expressions and assertion-
based verification in VHDL.

e Consider formal, synthesis, and coverage implications.

e Approach:
e Exploit work of others.
e Current plan is to integrate PSL by reference

MARLUG October 5, 2004 51 Copyright © SynthWorks 2004

VHDL-200X, Data Types and Abstractions

e Goals:
e Enhancements centered on the type system.
e Higher abstraction level constructs

e A few items on the list are:
e Generics for Packages (including types)
e Object-orientation
e Greater than 32-bit range for integers (infinite range)
e Sparse / Associative Arrays
e User-defined floating point mantissa/exponent
e User-defined positional values of enum literals

DesignCon 2004 52

VHDL-200X, Environment SynthWorks

e Goals:
e Simulation control environment.
e Standard interfaces to other languages.
e Additional support packages.

e A few items on the list are:
e Simulation control (like $stop, ... in Verilog)

e Direct C and Verilog calls with well defined mapping of
data objects (VHDL integer to C int)

e Conditional compilation

e VCD for VHDL

e TEE functionality to STD.OUTPUT
e Verilog and C Foreign interfaces

MARLUG October 5, 2004 53 Copyright © SynthWorks 2004

Other VHDL Standards Work SynthWorks

e 1076.6-2004 VHDL RTL Synthesis Standard

e Enhanced synthesis coding styles to accept a wider set of
synthesizable objects

e A few items updated are:
e Broader register coding styles
e Multiple clocked and multiple edged registers
e Support synthesis of registers in subprograms
e Support registers and latches in concurrent assignments

e See DVCon 2004 paper, "IEEE 1076.6: VHDL Synthesis
Coding Styles for the Future," and HDLCon 2002 paper,
"Extensions to the VHDL RTL Synthesis Standard," which are
at http://www.synthworks.com/papers

MARLUG October 5, 2004 54 Copyright © SynthWorks 2004

