
MARLUG - Mid-Atlantic Region Local Users Group
ANNUAL CONFERENCE - OCTOBER 5, 2004

Johns Hopkins University Applied Physics Lab – Laurel, MD

MARLUG - Mid-Atlantic Region Local Users Group
ANNUAL CONFERENCE - OCTOBER 5, 2004

Johns Hopkins University Applied Physics Lab – Laurel, MD

VHDL 200X Fast TrackVHDL 200X Fast Track
New Features being StandardizedNew Features being Standardized

By Jim LewisBy Jim Lewis
SynthWorks VHDL TrainingSynthWorks VHDL Training
Team Leader VHDL-200X Fast Track Team Leader VHDL-200X Fast Track
Jim@SynthWorks.comJim@SynthWorks.com

SynthWorks

MARLUG October 5, 2004 2 Copyright © SynthWorks 2004

VHDL-200X, Goals / What
Enhance/update VHDL to improve performance, modeling
capability, ease of use, verification features, simulation
control, and the type system.

Maintain VHDL style, nature, and backward compatibility

Leverage industry efforts
Spring board off of efforts by PSL assertions, Verisity E,
Vera, and SystemVerilog

Focus on features sponsored and prototyped by both users
and vendors to ensure quick adoption and that features are
both cool and useful.

Caution: All activities here are work in progress.

SynthWorks

MARLUG October 5, 2004 3 Copyright © SynthWorks 2004

VHDL-200X, Organization
VHDL-200X is being developed in a time phased effort.

The first phase is called Fast Track and is intended to be
completed in Mid 2005
The remainder of the work will be sorted in a priority basis
and will be developed in one or more following revisions.

Work is divided into several sub-groups:
Modeling and Productivity
Assertions
Testbench / Verification
Data Types and Abstractions
Performance
Environment

SynthWorks

MARLUG October 5, 2004 4 Copyright © SynthWorks 2004

VHDL-200X, Participation
Observer Participants

By IEEE rules, anyone (including non-IEEE members) with
a vested interest may attend meetings, join reflectors, and
comment on standards activity.

Voting Members
Development: Member of IEEE-CS + DASC + IEEE
Balloting: Member of IEEE-SA

Your input can make a difference. Participate.
See http://www.eda.org/vhdl-200x for details
Join main + individual reflectors

Not all tasks are standards tasks are LRM writing
Some simple tasks: review of new packages

SynthWorks

MARLUG October 5, 2004 5 Copyright © SynthWorks 2004

VHDL-200X, Sponsors
IEEE

IEEE-CS: IEEE Computer Society
DASC: Design Automation Standards Committee

VASG: VHDL Analysis and Standardization Group
VHDL-200X: Current Development Work

IEEE-SA: IEEE Standards Association
Coordinates balloting on all IEEE Standards.

Websites:
IEEE: http://www.ieee.org
DASC: http://www.dasc.org
VASG: http://www.eda.org/vasg
Accellera: http://www.accellera.org

SynthWorks

MARLUG October 5, 2004 6 Copyright © SynthWorks 2004

VHDL-200X, Financials $$$
IEEE/IEEE-SA do not fund standards projects

They provide infrastructure for balloting and legal issues

Most of the work is done by volunteers
Maintaining of reflectors, webpages
Writing and editing proposals
Technical meetings

Current plan is to hire an LRM editor
For this we need funding ($200K - $300K over 3 years)
Some money will come from EDA vendors,
But we will need other sources …

Contact Stephen Bailey (stephen@srbailey.com)

SynthWorks

MARLUG October 5, 2004 7 Copyright © SynthWorks 2004

Vendor Support of Standards
Business view of supporting EDA standards

Supporting a feature of a standard is an investment
Feature support is user driven

If you don't ask, they don't support it.

As a result, if you see new features you want to use,
tell your EDA vendor
tell your friends (who can then tell their vendors)

VHDL-200X-FT: Proposals

Unary Reduction Operators
Array/Scalar Logic Operators
to_string, to_hstring, …
hwrite, owrite, … hread, oread
Hierarchical references of signals
Sized bit string literals
Nnary Expressions
Conditional and Selected
assignment in sequential code
Expressions in port maps
Read out ports
Add Stop, Finish, and Restart as
callable routines
Unconstrained arrays of
unconstrained arrays
Records of unconstrained arrays

Context Clause
Simplified if expressions+
Process_Comb, Process_latch,
Process_ff
Aggregates with slices
Simplified Case Statements
Don't Care in a Case Statement
Fixed Point Packages
Floating Point Packages
Type Generics
Generics on Packages
PSL
IP Protection / Encryption
Std_logic_1164 Updates
Numeric_Std Updates

Much of VHDL's cumbersome syntax issues can be fixed

SynthWorks

SynthWorks

MARLUG October 5, 2004 9 Copyright © SynthWorks 2004

Unary Reduction Operators

Calculating Parity without reduction operators:
Parity <= Data(7) xor Data(6) xor Data(5) xor
 Data(4) xor Data(3) xor Data(2) xor
 Data(1) xor Data(0) ;

Define unary AND, OR, XOR, NAND, NOR, XNOR
function "and" (anonymous: BIT_VECTOR) return BIT;
function "or" (anonymous: BIT_VECTOR) return BIT;
function "nand" (anonymous: BIT_VECTOR) return BIT;
function "nor" (anonymous: BIT_VECTOR) return BIT;
function "xor" (anonymous: BIT_VECTOR) return BIT;
function "xnor" (anonymous: BIT_VECTOR) return BIT;

Calculating Parity with reduction operators:
Parity <= xor Data ;

SynthWorks

MARLUG October 5, 2004 10 Copyright © SynthWorks 2004

Array / Scalar Logic Operators
Proposal: Create symmetric array/scalar overloading of all
binary logic operators for bit_vector, std_logic_vector, ...

signal ASel, BSel, CSel, DSel : bit ;
signal Y, A, B, C, D : bit_vector(3 downto 0) ;
. . .

Y <= (A and ASel) or (B and BSel) or
 (Csel and C) or (DSel and D) ;

Application

function "and"(anonymous: BIT_VECTOR; anonymous : BIT)
 return BIT_VECTOR;
function "and"(anonymous: BIT; anonymous : BIT_VECTOR)
 return BIT_VECTOR;
. . .

SynthWorks

MARLUG October 5, 2004 11 Copyright © SynthWorks 2004

Array / Scalar Logic Operators
In this context, the following code implies the hardware below:

signal ASel : std_logic ;
signal T, A : std_logic_vector(3 downto 0) ;
. . .
T <= (A and ASel) ;

A(0)

A(1)

A(3)

ASel

T(0)

T(1)

T(3)

...

The value of ASel will replicated to
form an array.

When ASel = '0', value expands to "0000"
When ASel = '1', value expands to "1111"

SynthWorks

MARLUG October 5, 2004 12 Copyright © SynthWorks 2004

To_String, To_HString, ...

assert (ExpectedVal = ReadVal)
 report "Expected Val /= Actual Val. Expected = " &
 to_string (Expected) & " Actual = " &
 to_string (ReadVal)
 severity error ;

Report requires string values. To_string would make report more useful:

-- write(<file_handle>, <string>) ;
write(Output, "%%%ERROR data value miscompare." &
 NL & " Actual value = " & to_hstring(Data) &
 NL & " Expected value = " & to_hstring(ExpData) &
 NL & " at time: " & to_string(now, right, 12)) ;

Furthermore, to_string permits a usage of vhdl-93 write:

SynthWorks

MARLUG October 5, 2004 13 Copyright © SynthWorks 2004

function to_string (
 VALUE : in integer;
 JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0
) return string ;

function to_hstring (. . .) return string ;

function to_ostring (. . .) return string ;

function to_bstring (. . .) return string ;

function to_dstring (. . .) return string ;

Support hex, octal, binary, and decimal for all types (integer, bit_vector, …)

To_String, To_HString, ...

SynthWorks

MARLUG October 5, 2004 14 Copyright © SynthWorks 2004

Hwrite, Dwrite, Owrite, Bwrite

procedure hwrite (
 Buf : inout Line ;
 VALUE : in integer;
 JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0
) ;

procedure dwrite (. . .) ;

procedure owrite (. . .) ;

procedure bwrite (. . .) ;

Support write with radix, similar to std_logic_textio, for all types

Work inspired by Synopsys' donation of std_logic_textio to IEEE for IEEE
1164 efforts.

Goal to stay compatible with std_logic_textio

SynthWorks

MARLUG October 5, 2004 15 Copyright © SynthWorks 2004

Hread, Dread, Oread, Bread

function hread (
 Buf : inout Line ;
 VALUE : out integer;
 Good : out boolean
) ;

function dread (. . .) ;

function oread (. . .) ;

function bread (. . .) ;

Support write with radix, similar to std_logic_textio, for all types

SynthWorks

MARLUG October 5, 2004 16 Copyright © SynthWorks 2004

Hierarchical Reference

Alias addr : std_logic_vector signal is
 out ":tb:u_uut:u_mem_ctrl:addr" ;

Alias addr : std_logic_vector(7 downto 0) signal is
 out ":tb:u_uut:u_mem_ctrl:addr" ;

Alias data : std_logic_vector(7 downto 0) signal is
 inout ":tb:u_uut:u_mem_ctrl:data" ;

Permanent connection to object by expanding upon alias.
Mode specifies in (read), out (drive), or inout
Path to signal specified in the format of path_name (see attribute
'path_name)
Currently objects envisioned to be signals, constants (and hence
generics), and shared variables

Still have problems to solve to make this a reality.

SynthWorks

MARLUG October 5, 2004 17 Copyright © SynthWorks 2004

Hierarchical Reference *

Drive(
 source_signal : IN STRING ;
 destination_signal : IN STRING ;
 delay : IN TIME := 0 ns ;
 delay_mode : IN delay_mode_type := DEPOSIT;
 verbose : IN integer) ;

Probe(
 source_signal : IN STRING ;
 destination_signal : IN STRING ;
 verbose : IN integer) ;

Near Term Alternative, Package based approach

* Inspired by donations from Mentor (Signal Spy) and Cadence (NCMirror)

SynthWorks

MARLUG October 5, 2004 18 Copyright © SynthWorks 2004

Hierarchical Reference*
Temporary read / write signal with procedures

procedure signal_force (
 destination_signal : IN STRING;
 force_value : IN STRING;
 delay : IN TIME := 0 ns ;
 delay_mode : IN delay_mode_type := DEPOSIT;
 cancel_period : IN DELAY_LENGTH := 0 ns ;
 delta_event : IN BOOLEAN := FALSE);

procedure signal_release (
 destination_signal : IN STRING;
 verbose : IN integer) ;

get_value(
 destination_signal : IN STRING;
 verbose : IN integer) ;

*Work inspired by donations from both Mentor and Cadence

SynthWorks

MARLUG October 5, 2004 19 Copyright © SynthWorks 2004

Sized Bit String Literals

7X"7F" = "1111111"
7D"127" = "1111111"

X"AA" = "10101010"

Allow specification of size (and decimal bit string literals):

Currently hex bit string literals are a multiple of 4 in size

9UX"F" = "000001111" Unsigned 0 fill
9SX"F" = "111111111" Signed: left bit = sign
9X"F" = "000001111" Defaults to unsigned

Allow specification of signed vs unsigned (for extension of value):

7X"XX" = "XXXXXXX"
7X"ZZ" = "ZZZZZZZ"

Allow Replication of X and Z

SynthWorks

MARLUG October 5, 2004 20 Copyright © SynthWorks 2004

N-Nary Expressions

Y <= A and B if S = '1', C and D ;
Y <= (A and B) if S = '1', (C and D) ;

Similar to conditional signal assignment …

Signal A : integer := 7 if GEN_VAL = 1, 15 ;

with MuxSel select
 Y <= A if Asel=’1’, B when ‘0’,
 C if Csel=’1’, D when ‘1’,
 ‘X’ when others ;

And it can be used anywhere an expression can:

… except it is an expression:

Y <= A and (B if S = '1', C) and D ;

SynthWorks

MARLUG October 5, 2004 21 Copyright © SynthWorks 2004

Allow Conditional Assignments
for Signals and Variables in a Process

NextState <= FLASH when (FP = '1') else IDLE ;

if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;

Statemachine code:

Simplification:

Note: the new part is doing this in a process

NextState := FLASH when (FP = '1') else IDLE ;

Also support conditional variable assignment:

SynthWorks

MARLUG October 5, 2004 22 Copyright © SynthWorks 2004

Allow Selected Assignments
for Signals and Variables in a Process

signal A, B, C, D, Y : std_logic ;
signal MuxSel : std_logic_vector(1 downto 0) ;
. . .

Process(clk)
begin
 wait until Clk = '1' ;
 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

 Yreg <= nReset and Mux ;
end process ;

SynthWorks

MARLUG October 5, 2004 23 Copyright © SynthWorks 2004

Signal Expressions in Port Maps
U_UUT : UUT
 port map (A, Y and C, B) ;

Semantics of expressions in port map:
convert to an equivalent concurrent signal assignment
if expression is not a single signal, constant, or does not qualify as a
conversion function, then it will incur a delta cycle delay.

Needed for PSL and OVL to avoid creating an extra signal assignment

U_Decoder : Decoder
 port map (
 Addr => A2 & A1 & A0,
 Sel => Sel
);

U_Decoder : Decoder
 port map (
 Addr => (A2, A1, A0),
 Sel => Sel
);

Also facilitates mapping bits to arrays

SynthWorks

MARLUG October 5, 2004 24 Copyright © SynthWorks 2004

Read Output Ports
Read output ports

Value read will be locally driven value

Assertions need to be able to read output ports

SynthWorks

MARLUG October 5, 2004 25 Copyright © SynthWorks 2004

Stop and Finish

Create procedures STOP and FINISH that either bind to VHPI calls or
internal simulator routines.

-- Stop a simulation in the manner that breakpoint does
procedure STOP;

-- Terminate a simulation and exit to the simulator prompt
procedure FINISH;

Report "Just Kidding. Test Passed" Severity Failure ;

Currently one way to stop a simulation is:

** Failure: Just Kidding. Test Passed
Time: 1060 us Iteration: 4 Instance: ...

Which produces the message:

SynthWorks

MARLUG October 5, 2004 26 Copyright © SynthWorks 2004

Arrays of Unconstrained Arrays
type std_logic_matrix is array of std_logic_vector ;

-- constraining in declaration
signal A : std_logic_matrix(7 downto 0).(5 downto 0) ;

-- Accessing a Row
A(5) <= "111000" ;

-- Accessing an Element
A(7).(5) <= '1' ;

entity e is
port (
 A : std_logic_matrix(7 downto 0).(5 downto 0) ;
 . . .
) ;

SynthWorks

MARLUG October 5, 2004 27 Copyright © SynthWorks 2004

Records of Unconstrained Arrays
type complex is record
 a : std_logic ;
 re : signed ;
 im : signed ;
end record ;

-- constraining in declaration
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

SynthWorks

MARLUG October 5, 2004 28 Copyright © SynthWorks 2004

Context Clause Design Unit
Problem:

Currently users have to specify a large collection of packages before an
entity and there is no way to abstract this.

library ieee ;
 use ieee.std_logic_1164.all ;
 use ieee.numeric_std.all ;
 use std.textio.all ;

This problem will continue to grow with additional standards packages
Floating Point
Unsigned math with std_logic_vector
Assertion Libraries
. . .

SynthWorks

MARLUG October 5, 2004 29 Copyright © SynthWorks 2004

Context Clause Design Unit
Create a named context design unit that references packages to use
Context project1_Ctx is
 library ieee ;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
 use std.textio.all ;
 use ieee.numeric_unsigned.all ;

 library Lib_P1 ;
 use Lib_P1.P1Pkg.all ;
 use Lib_P1.P1_Defs.all ;

end ;

Reference named contexts:
Library Lib_P1 ;
 context Lib_P1.project1_ctx ;

SynthWorks

MARLUG October 5, 2004 30 Copyright © SynthWorks 2004

Simplified If Expressions+

if (Cs1 and not nCs2 and Cs3 and Addr=X"A5") then
if (Cs1 and nCs2='0' and Cs3 and Addr=X"A5") then
if (not nWe) then

Enable simplified conditional expressions
if, elsif, wait until, when, while

Be consistent with std_ulogic, so active low is represented with "not nCs2"

Sel <= Cs1 and not nCs2 and Cs3 ;

if (Cs1='1' and nCs2='0' and Cs3='0' and Addr=X"A5") then
if ((Cs1 and not nCs2 and Cs3)='1' and Addr=X"A5") then
if nWe = '0' then

Backward compatible with current VHDL syntax:

SynthWorks

MARLUG October 5, 2004 31 Copyright © SynthWorks 2004

Simplified If Expressions+

if (Cs1 and not nCs2 and Cs3) then

Implementation Part 1:
At top level of an conditional expression, if the resulting expression is not
boolean, call the function condition? to convert to boolean (if it exists)

With Part 1: the following will work:

Intended types to create overloading for are bit types (bit, std_ulogic)

Implementation Part 2:
Create overloaded logic operators that allow boolean to be used with
bit/std_logic and result in bit/std_ulogic

This promotes true to '1' and false to '0' to maintain accuracy
This enables the following two examples:

if (Cs1 and not nCs2 and Cs3 and Addr=X"A5") then
DevSel1 <= Cs1 and not nCs2 and Cs3 and Addr=X"A5" ;

SynthWorks

MARLUG October 5, 2004 32 Copyright © SynthWorks 2004

Process_Comb, ...

Mux3_proc : process_comb
begin
 case MuxSel is
 when "00" => Y <= A ;
 when "01" => Y <= B ;
 when "10" => Y <= C ;
 when others => Y <= 'X' ;
 end case ;
end process

Process_Comb
Indicates a process only contains combinational logic
Automatically create a sensitivity list with all signals on sensitivity list
If process creates a latch or register, synthesis tools shall generate an
error and not produce any netlist results.

Benefit: Reduce errors in creating combinational logic, particularly,
statemachines.

SynthWorks

MARLUG October 5, 2004 33 Copyright © SynthWorks 2004

Process_Latch, Process_ff
Process_latch

Indicates all signal assignments in a process create only latches
Automatically creates a sensitivity list with all signals read in the process
on the sensitivity list
If the process creates combinational logic or a register, synthesis tools
shall generate an error and not produce any netlist results.

Process_ff
Indicates all signal assignments in a process create only registers
Automatically creates a sensitivity list with the clock signal and any
asynchronous signals on the sensitivity list.
If the process creates combinational logic or a latch, synthesis tools
shall generate an error and not produce any netlist results.

SynthWorks

MARLUG October 5, 2004 34 Copyright © SynthWorks 2004

Slices in Array Aggregates

Signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

. . .

(CarryOut, Y) <= ('0' & A) + ('0' & B) ;

Allow slices in an Array Aggregate

Currently this would have to be written as:

(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
 <= ('0' & A) + ('0' & B) ;

SynthWorks

MARLUG October 5, 2004 35 Copyright © SynthWorks 2004

Simplified Case Statement
Allow non-scalars to be locally static
Integrate packages 1164, 1076.2, and 1076.3 into 1076

Make the types and operands in these packages locally static.

signal A, B : unsigned (3 downto 0) ;
. . .

process (A, B)
begin
 case A xor B is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SynthWorks

MARLUG October 5, 2004 36 Copyright © SynthWorks 2004

Simplified Case Statement
In some cases will still need a type qualifier, but not a constrained type

When both std_logic_1164 and numeric_std are visible, concatenating
std_logic objects can result in std_logic_vector, signed, or unsigned.

signal A, B, C, D : std_logic ;
. . .

process (A, B, C, D)
begin
 case std_logic_vector'(A & B & C & D) is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SynthWorks

MARLUG October 5, 2004 37 Copyright © SynthWorks 2004

Case With Don't Care
Create new form of case: Case?
Allow use of '-' in targets provided targets are non-overlapping

-- Priority Encoder
process (Request)
begin
 case Request is
 when "1---" => Grant <= "1000" ;
 when "01--" => Grant <= "0100" ;
 when "001-" => Grant <= "0010" ;
 when "0001" => Grant <= "0001" ;
 when others => Grant <= "0000" ;
 end case ;
end process ;

SynthWorks

MARLUG October 5, 2004 38 Copyright © SynthWorks 2004

Fixed Point Types
Definitions in package, ieee.fixed_pkg.all
type ufixed is array (integer range <>) of std_logic;
type sfixed is array (integer range <>) of std_logic;

constant A : ufixed (3 downto -3) := "0011010000" ;

 3210 -3
 IIIIFFF
 0110100 = 0110.100 = 6.5

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .

Y <= A + B ;

For downto range, whole number is on the left and includes 0.

Math is full precision math:

SynthWorks

MARLUG October 5, 2004 39 Copyright © SynthWorks 2004

Floating Point Types
Definitions in package, ieee.fixed_pkg.all
type fp is array (integer range <>) of std_logic;

signal A, B, Y : fp (8 downto -23) ;

 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127
F = Fraction has an implied 1 in leftmost bit

0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125 = 1/8

Y <= A + B ; -- FP numbers must be same size

Format is Sign Bit, Exponent, Fraction

SynthWorks

MARLUG October 5, 2004 40 Copyright © SynthWorks 2004

Type Generics +
Generics on Packages

Packages get instantiated to customize them for a particular type

SynthWorks

MARLUG October 5, 2004 41 Copyright © SynthWorks 2004

PSL
PSL will be incorporated directly into VHDL
Define and Specify properties in VHDL

SynthWorks

MARLUG October 5, 2004 42 Copyright © SynthWorks 2004

IP Protection and Encryption
Makes IP model encryption methodology independent of EDA tool vendors

SynthWorks

MARLUG October 5, 2004 43 Copyright © SynthWorks 2004

Std Logic_1164 Updates
Goals: Enhance current std_logic_1164 package

A few items on the list are:
Uncomment xnor operators
Add shift operators for vector types
Add logical reduction operators
Add array/scalar logical operators
Match Function
Provide text I/O package for standard logic (similar to
Synopsys' std_logic_textio)

See also DVCon 2003 paper, "Enhancements to VHDL's
Packages" which is available at:

http://www.synthworks.com/papers

SynthWorks

MARLUG October 5, 2004 44 Copyright © SynthWorks 2004

Numeric Std Updates
Goals:

Enhance current numeric_std package.
Unsigned math with std_logic_vector/std_ulogic_vector

A few items on the numeric_std list are:
Logic reduction operators
Array / scalar logic operators
Array / scalar addition operators
TO_X01, IS_X for unsigned and signed
TextIO for numeric_std

SynthWorks

MARLUG October 5, 2004 45 Copyright © SynthWorks 2004

Resulting Operator Overloading
Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Numeric Array Array Array*
Array Integer Array*
Integer Array Array*

Logic, Addition Array Std_ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std_ulogic

* for comparison operators the result is boolean

SynthWorks

MARLUG October 5, 2004 46 Copyright © SynthWorks 2004

VHDL-200X, Summary

End result
Get full verification capabilities
Language consistency of VHDL
Not necessary to use other languages or switch

VHDL-200X = 200 X better than ...

Fast Track work is the first phase of VHDL-200X
Expected completion of current work is mid-2005.

Lots of more work to be done
Goal: Transition VHDL into a full Hardware Description
and Verification Language (HDVL).
Integrate good features of Vera, SystemC, specman E,
and SystemVerilog

SynthWorks

MARLUG October 5, 2004 47 Copyright © SynthWorks 2004

Appendix VHDL-200X, Subgroups
The primary intent of this presentation was to cover near term work that is
being delivered with the VHDL-200X fast track.

This appendix covers the charter of the following subgroups:
Performance
Modeling and Productivity
Testbench / Verification
Assertions
Data Types and Abstractions
Environment

Each VHDL-200x subgroup has its own webpage, reflector, and team
leader

To be fully vested in the process, one would have to sign up for the
VHDL-200X reflector and the reflector of each subgroup.

SynthWorks

MARLUG October 5, 2004 48 Copyright © SynthWorks 2004

VHDL-200X, Performance
Goals:

Make language changes that facilitate enhanced tool
performance, primarily for, but not only for simulation.

VHDL-200X, Modeling and Productivity
Goals:

Improve designer productivity through
enhancing conciseness,
simplifying common occurrences of code, and
improving capture of intent.

Facilitate modeling of functionality that is currently difficult
or impossible.

A few items on the list are:
Case/If Generate
Pick up where fast track leaves off

DesignCon 2004 49

VHDL-200X, Testbench and Verification
Goals:

Ease the job of the verification engineer.
Give VHDL similar functionality to Vera and Verisity E.

A few items on the list are:
Constrained Random stimulus generation with optional
and dynamic weighting
Associative arrays
Queues/FIFOs
Memory implementation and loading & dumping

DesignCon 2004 50

SynthWorks

MARLUG October 5, 2004 51 Copyright © SynthWorks 2004

VHDL-200X, Assertions
Goals:

Define support for temporal expressions and assertion-
based verification in VHDL.
Consider formal, synthesis, and coverage implications.

Approach:
Exploit work of others.
Current plan is to integrate PSL by reference

VHDL-200X, Data Types and Abstractions
Goals:

Enhancements centered on the type system.
Higher abstraction level constructs

A few items on the list are:
Generics for Packages (including types)
Object-orientation
Greater than 32-bit range for integers (infinite range)
Sparse / Associative Arrays
User-defined floating point mantissa/exponent
User-defined positional values of enum literals

DesignCon 2004 52

SynthWorks

MARLUG October 5, 2004 53 Copyright © SynthWorks 2004

VHDL-200X, Environment
Goals:

Simulation control environment.
Standard interfaces to other languages.
Additional support packages.

A few items on the list are:
Simulation control (like $stop, ... in Verilog)
Direct C and Verilog calls with well defined mapping of
data objects (VHDL integer to C int)
Conditional compilation
VCD for VHDL
TEE functionality to STD.OUTPUT
Verilog and C Foreign interfaces

SynthWorks

MARLUG October 5, 2004 54 Copyright © SynthWorks 2004

Other VHDL Standards Work

Enhanced synthesis coding styles to accept a wider set of
synthesizable objects

A few items updated are:
Broader register coding styles
Multiple clocked and multiple edged registers
Support synthesis of registers in subprograms
Support registers and latches in concurrent assignments

See DVCon 2004 paper, "IEEE 1076.6: VHDL Synthesis
Coding Styles for the Future," and HDLCon 2002 paper,
"Extensions to the VHDL RTL Synthesis Standard," which are
at http://www.synthworks.com/papers

1076.6-2004 VHDL RTL Synthesis Standard

