
IEEE 1076-2008
 VHDL-200X

By

Jim Lewis

SynthWorks VHDL Training

jim@synthworks.com

IEEE VHDL Working Group Chair

SynthWorks

2

VHDL-2008: Powerful, Easier to Use VHDL

Copyright © 1999 - 2012 by SynthWorks Design Inc.

Reproduction of this entire document in whole for individual usage is permitted. All
other rights reserved. In particular, no material from this guide may be reproduced
and used in a group presentation, tutorial, or classroom without the express written
permission of SynthWorks Design Inc.

SynthWorks is a service mark belonging to SynthWorks Design Inc.

Contact Information
Jim Lewis, President
SynthWorks Design Inc
11898 SW 128th Avenue
Tigard, Oregon 97223
503-590-4787
800-505-VHDL
jim@SynthWorks.com

http://www.SynthWorks.com

SynthWorks

3

IEEE 1076-2008 = VHDL-200X

History:
Feb 2003, started as VHDL-200X by IEEE VASG
Sept 2005, Accellera provides a funding and a separate working group
July 2006, VHDL Draft 3.0 becomes an Accellera standard
Summer 2008, released back to IEEE
September 2008, approved as IEEE 1076-2008

Standard available at http://www.ieee.org/go/shop

IEEE 1076-2008 is a work product of IEEE VASG and Accellera VHDL
working group

SynthWorks

4

IEEE 1076-2008

PSL, IP Protection, VHPI
Fixed and Floating Point Packages
Records and Arrays with
unconstrained elements
Process(all)
New Types: Integer_vector …
ENV package: STOP
Package Integration
New and Enhanced Operators

Simplified Conditional (IF, While)
Simplified Case Statements
Don't Care in a Case
Enhanced bit string literals
Better Printing
Extended Assignments
Enhanced Port Maps
Context Declarations and clause
Enhanced Generics

Biggest Language change since 1076-1993

SynthWorks

5

PSL, IP Protection, VHPI

Assertion language integrated directly into VHDL
Properties are VHDL block (concurrent) declarations
Assert and cover are VHDL concurrent statements
Vunit, Vmode, Vprop are VHDL Design Units

IP Protection and Encryption
A pragma-based approach

Keywords and constructs specify algorithms and keys
Constructs demarcated protected envelopes of VHDL code

VHDL Procedural Interface - VHPI
Standardized Procedural Programming Interface to VHDL

Gives tools access to information about a VHDL model during analysis,
elaboration, and execution

PSL = Property Specification Language (IEEE 1850)

SynthWorks

6

Fixed Point Types
Definitions in package: ieee.fixed_pkg.all (instance of fixed_generic_pkg)
type ufixed is array (integer range <>) of std_logic;
type sfixed is array (integer range <>) of std_logic;

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;
. . .

Y <= A + B ;

Math is full precision math:

constant A : ufixed (3 downto -3) := "0110100" ;

 3210 -3
 IIII FFF
 0110 100 = 0110.100 = 6.5

For downto range, whole number is on the left and includes 0.

SynthWorks

7

Floating Point Types
Definitions in package: ieee.float_pkg.all (instance of float_generic_pkg)
type float is array (integer range <>) of std_logic;

signal A, B, Y : float (8 downto -23) ;

 8 76543210 12345678901234567890123
 S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

E = Exponent has a bias of 127
F = Fraction with implied 1 left of the binary point

0 10000000 00000000000000000000000 = 2.0
0 10000001 10100000000000000000000 = 6.5
0 01111100 00000000000000000000000 = 0.125 = 1/8

Y <= A + B ; -- FP numbers must be same size

Format is Sign Bit, Exponent, Fraction

SynthWorks

8

Composites with Unconstrained Elements

signal A : std_logic_matrix(5 downto 0)(7 downto 0) ;

type std_logic_matrix is array (natural range <>)
 of std_logic_vector ;

Arrays with Unconstrained Array Elements

type complex is record
 a : std_logic ;
 re : signed ;
 im : signed ;
end record ;

signal B : complex (re(7 downto 0), im(7 downto 0)) ;

Records with Unconstrained Array Elements

SynthWorks

9

Process (all)

Mux3_proc : process(all)
begin
 case MuxSel is
 when "00" => Y <= A ;
 when "01" => Y <= B ;
 when "10" => Y <= C ;
 when others => Y <= 'X' ;
 end case ;
end process ;

Creates a sensitivity list with all signals on sensitivity list

Benefit: Reduce mismatches between simulation and synthesis

SynthWorks

10

Types: New Array Types
type integer_vector is array (natural range <>) of integer ;
type real_vector is array (natural range <>) of real ;
type time_vector is array (natural range <>) of time ;
type boolean_vector is array (natural range <>) of boolean ;

function sum (A : integer_vector) return integer is
 variable result : integer := 0 ;
begin
 for I in A'range loop
 result := result + A(I) ;
 end loop ;
 return result ;
end function sum ;

Signal A, B : integer ;
. . .
A := Sum ((1, 5, 9)) ;
B := Sum ((7, 15, 2, 23, 4, 8)) ;

Allows emulation of argv by use of unconstrained arrays

SynthWorks

11

Types: Enhanced Std_logic_vector
subtype std_logic_vector is (resolved) std_ulogic_vector ;

signal A_slv : std_logic_vector(7 downto 0) ;
signal B_sulv : std_ulogic_vector(7 downto 0) ;
. . .

A_slv <= B_sulv ;

Allows easy connection between std_ulogic_vector and std_logic_vector

Also removes the need to provide overloading for both std_ulogic_vector
and std_logic_vector in the packages

SynthWorks

12

ENV package library STD
package ENV is
 procedure STOP (STATUS: INTEGER);
 procedure STOP ;

 procedure FINISH (STATUS: INTEGER);
 procedure FINISH ;

 function RESOLUTION_LIMIT return DELAY_LENGTH;

end package ENV;

Stop simulator like
breakpoint

Stop simulator and
do not continue

Simulator resolution

Usage:
use std.env.all ;
. . .
TestProc : process
begin
 . . .
 stop(0) ;
end process TestProc ;

TestProc : process
begin
 . . .
 std.env.stop(0) ;
end process TestProc ;

SynthWorks

13

Package Integration
Following packages integrated into IEEE 1076

std.standard
std.env - new
ieee.std_logic_1164 - updated
ieee.math_real
ieee.math_complex
ieee.numeric_std - updated
ieee.numeric_std_unsigned - new, unsigned math for std_ulogic_vector
ieee.fixed_generic_pkg - new
ieee.fixed_pkg - new, an instance of the generic fixed package
ieee.float_generic_pkg - new
ieee.float_pkg - new, an instance of the generic float package

SynthWorks

14

Functions: IS_X, TO_X01
IS_X for all std_ulogic based types

-- originally only in std_logic_1164
function TO_X01 (S : T) return T;
function TO_X01Z (S : T) return T;
function TO_UX01 (S : T) return T;

-- originally only in numeric_std
function TO_01 (S : T; XMAP : STD_ULOGIC := '0') return T;

function IS_X (S : T) return BOOLEAN;

Strength strippers for all std_ulogic based types

SynthWorks

15

Operators: Unary Reduction

Calculating Parity without reduction operators:
Parity <= Data(7) xor Data(6) xor Data(5) xor
 Data(4) xor Data(3) xor Data(2) xor
 Data(1) xor Data(0) ;

Define unary AND, OR, XOR, NAND, NOR, XNOR
function "and" (anonymous: BIT_VECTOR) return BIT;
function "or" (anonymous: BIT_VECTOR) return BIT;
function "nand" (anonymous: BIT_VECTOR) return BIT;
function "nor" (anonymous: BIT_VECTOR) return BIT;
function "xor" (anonymous: BIT_VECTOR) return BIT;
function "xnor" (anonymous: BIT_VECTOR) return BIT;

Calculating Parity with reduction operators:
signal Data : std_logic_vector(7 downto 0) ;
signal Parity : std_logic ;
. . .

Parity <= xor Data ;

SynthWorks

16

Operators: Array / Bit Logic

signal ASel : std_logic ;
signal Y, A :
 std_logic_vector(3 downto 0) ;
. . .
Y <= A and ASel ;

A(0)

A(1)

A(3)
ASel

Y(0)

Y(1)

Y(3)

..

.

For all binary logic operators (and, or, …)

When ASel = '0', it represents "0000"
When ASel = '1', it represents "1111"

Application: Data read back logic

signal ASel, BSel, CSel, DSel : std_logic ;
signal DataOut, AReg, BReg, CReg, DReg

: std_logic_vector(3 downto 0) ;
. . .

DataOut <= (AReg and ASel) or (BReg and BSel) or
 (CSel and CReg) or (DSel and DReg) ;

SynthWorks

17

Operators: Array / Bit Addition
Overload "+" and "-" for all math types:

function "+"(L: unsigned; R: std_ulogic) return unsigned;
function "+"(L: std_ulogic; R: unsigned) return unsigned;

signal Cin : std_logic ;
signal A, B : unsigned(7 downto 0) ;
signal Y : unsigned(8 downto 0) ;
. . .

Y <= ('0' & A) + ('0' & B) + Cin ;

The value of Cin will be expanded to be "0" & Cin
and typed appropriately:

When Cin = '0', value expands to "0000"
When Cin = '1', value expands to "0001"

SynthWorks

18

Slices in Array Aggregates

signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

. . .

(CarryOut, Y) <= ('0' & A) + ('0' & B) ;

Allow slices in an Array Aggregate

Currently, this would have to be by either of the following:

(CarryOut,Y(7),Y(6),Y(5),Y(4),Y(3),Y(2),Y(1),Y(0))
 <= ('0' & A) + ('0' & B) ;

signal Y9 : unsigned(8 downto 0) ;
. . .
Y9 <= ('0' & A) + ('0' & B) ;
Y <= Y9(7 downto 0) ;
CarryOut <= Y9(8) ;

SynthWorks

19

Operators: Maximum / Minimum

function minimum (L, R: T) return T;
function maximum (L, R: T) return T;

Defined for all scalar, discrete array types, and numeric std_logic type*

All types in std.standard except real_vector or time_vector
* numeric std_logic type = unsigned, signed, sfixed, ufixed, float

function minimum (A: AT) return ET;
function maximum (A: AT) return ET;

Defined for single dimensional array types, T, whose element, E, is a scalar

Integer_vector, real_vector, time_vector, ...

procedure MemInit (AddrBits, DataBits : integer) is
 constant BLK_ADJ : integer := minimum(BLK_BITS, AddrBits);
 subtype AT is MemArrayType(0 to 2**(AddrBits-BLK_ADJ)-1) ;
begin

Used in a constant:

SynthWorks

20

Operators: Matching Relational

DevSel1 <= Addr?=X"A5" and Cs1 and not nCs2 ;

New relational operators: ?=, ?/=, ?>, ?>=, ?<, ?<=
return element values (bit, std_ulogic, …)
Understands std_ulogic values and returns UX01

?=, ?/=
understands '-' as don't care
defined for std_ulogic & 1 dimensional arrays of std_ulogic

?>, ?>=, ?<, ?<=
Defined for bit and std_ulogic
Not implicitly defined like >, >=, <, <=
Overloaded in numeric packages

SynthWorks

21

Simplified Conditional Expressions

Use matching relationals with arrays: ?=, ?/=, ?>, ?>=, ?<, ?<=
signal Addr : std_logic_vector(7 downto 0) ;
. . .

if (Addr?=X"A5" and Cs1 and not nCs2) then

signal Cs1, nCs2, Cs3 : std_logic ;
. . .
if (Cs1 and not nCs2 and Cs3) then

For all conditional expressions (if, when, exit, …)
If entire conditional is bit or std_ulogic, then implicitly call the condition
operator: ??

Condition operator can be called directly:

signal Clk : std_logic ;
signal edge : boolean ;
. . .
Edge <= rising_edge(Clk) and ?? (Cs1) ;

SynthWorks

22

Simplified Case Statement

Locally static now includes operators and functions that:
have composite results and/or
are defined in std_logic_1164, numeric_std, or numeric_std_unsigned

constant ONE1 : unsigned := "11" ;
constant CHOICE2 : unsigned := "00" & ONE1 ;
signal A, B : unsigned (3 downto 0) ;
. . .
process (A, B)
begin
 case A xor B is
 when "0000" => Y <= "00" ;
 when CHOICE2 => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when ONE1 & "00" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

A xor B
"0000"
CHOICE2
"0110"
ONE1 & "00"

Now a Globally Static Type

Still a Locally Static expression, however

SynthWorks

23

Simplified Case Statement
Although concatenation is allowed, some cases still require a type qualifier.

signal A, B, C, D : std_logic ;
. . .

process (A, B, C, D)
begin
 case std_logic_vector'(A & B & C & D) is
 when "0000" => Y <= "00" ;
 when "0011" => Y <= "01" ;
 when "0110" => Y <= "10" ;
 when "1100" => Y <= "11" ;
 when others => Y <= "XX" ;
 end case ;
end process ;

SynthWorks

24

Case? = Case With Don't Care
For std_ulogic or arrays of std_ulogic, '-' represents don't care
process (Request)
begin
 case? Request is
 when "1---" => Grant <= "1000" ;
 when "01--" => Grant <= "0100" ;
 when "001-" => Grant <= "0010" ;
 when "0001" => Grant <= "0001" ;
 when others => Grant <= "0000" ;
 end case? ;
end process ;

"1---"
"01--"
"001-"

'-' in a choice = don't care
Choices still must be non-overlapping

Request

'-' in case expression = error

with Request select?
 Grant <= "1000" when "1---",

"0100" when "01--",
"0010" when "001-",
"0001" when "0001",

 "0000" when others ;

There is a corresponding select?

SynthWorks

25

Enhanced Bit String Literals

X"AA" = "10101010"

7X"7F" = "1111111"
7D"127" = "1111111"

Allow specification of size (and decimal bit string literals):

Currently hex bit string literals are a multiple of 4 in size

9UX"F" = "000001111" Unsigned 0 fill
9SX"F" = "111111111" Signed: left bit = sign
9X"F" = "000001111" Defaults to unsigned

Allow specification of signed vs unsigned (extension of value):

7SX"XX" = "XXXXXXX"
9UX"ZZ" = "0ZZZZZZZZ"
9SX"ZZ" = "ZZZZZZZZZ"

Allow Replication of X and Z

SynthWorks

26

Printing: Hwrite, Owrite, Swrite, Hread, ...

procedure hwrite (
 Buf : inout Line ;
 VALUE : in bit_vector ;
 JUSTIFIED : in SIDE := RIGHT;
 FIELD : in WIDTH := 0
) ;
procedure hread (
 Buf : inout Line ;
 VALUE : out bit_vector ;
 Good : out boolean
) ;
procedure owrite (. . .) ;
procedure oread (. . .) ;
procedure swrite (. . .) ; -- string
procedure sread (. . .) ;

Support Hex and Octal read & write for all bit based array types

No new packages.
Supported in base packages (std.standard, ieee.std_logic_1164, …)
For backward compatibility, std_logic_textio contains aliases

function to_string (
 VALUE : in std_logic_vector;
) return string ;

function to_hstring (. . .) return string ;

function to_ostring (. . .) return string ;

Create to_string for all types.
Create hex and octal functions for all bit based array types

Printing: To_String, To_HString, To_OString

27

write(OUTPUT , "%%%ERROR data value miscompare." &
 LF & " Actual value = " & to_hstring (Data) &
 LF & " Expected value = " & to_hstring (ExpData) &
 LF & " at time: " & to_string (now, right, 12) &
 LF) ;

Formatting Output with Write (not write from TextIO):

SynthWorks

28

Assignments: Extended Conditional

if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;

In VHDL-2002, a conditional in a process requires an if statement:

NextState <= FLASH when (FP = '1') else IDLE ;

Conditional signal assignment in sequential code:

NextState := FLASH when (FP = '1') else IDLE ;

Conditional variable assignment in sequential code:

VHDL-2008 allows:

SynthWorks

29

Assignments: Extended Selected

signal A, B, C, D, YReg : std_logic ;
signal MuxSel : std_logic_vector(1 downto 0) ;
. . .

Process(clk)
begin
 if rising_edge(Clk) then
 with MuxSel select
 Mux :=
 A when "00",
 B when "01",
 C when "10",
 D when "11",
 'X' when others ;

 YReg <= nReset and Mux ;
 end if ;
end process ;

VHDL-2008 allows selected assignment in sequential code:

SynthWorks

30

Assignments: Force and Release

A <= force '1' ;

Forcing a port or signal:

For in ports and signals this forces the effective value
For out and inout ports this forces the driving value

A <= release ;

Releasing a signal:

SynthWorks

31

Assignments: Hierarchical Reference

A <= <<signal .tb_top.u_comp1.my_sig : std_logic_vector >>;

Direct hierarchical reference:

Specifies object class (signal, shared variable, constant)
path (in this case from top level design)
type (constraint not required)

alias u1_my_sig is <<signal u1.my_sig : std_logic_vector >>;

Using an alias to create a local short hand:

Here, path refers to component instance u1 (subblock of current block).
Can also go up from current level of hierarchy using "^"

Note an object must be elaborated before the reference is elaborated
Designs are elaborated in order of instantiation
As a result, later designs may reference into earlier ones

SynthWorks

32

Enhanced Port Maps

U_CHIP : CHIP port map (A, Y and C, B) ;

If the expression contains a signal and is not a conversion,
it is converted to a concurrent signal assignment
and it will incur a delta cycle delay

Expressions in Port Maps

Reading Output Ports

Value read will be locally driven value

Allows assertions to read out ports without creation of additional signals

Needed to avoid extra signal assignments with OVL

SynthWorks

33

Context Declaration
Primary design unit that groups packages references into a single name

Context project1_Ctx is
 library ieee, YYY_math_lib ;
 use std.textio.all ;
 use ieee.std_logic_1164.all;
 use ieee.numeric_std.all ;
 use YYY_math_lib.ZZZ_fixed_pkg.all ;
end ;

Reference the named context unit

Library Lib_P1 ;
 context Lib_P1.project1_ctx ;

Benefit increases as additional standard packages are created
Fixed Point, Floating Point, Assertion Libraries, . . .

SynthWorks

34

Enhanced Generics

package ScoreBoardPkg is
 generic (
 type BaseType ;
 function check(A, E : BaseType) return boolean
) ;
 . . .
end ScoreBoardPkg ;

Formal Type and Subprogram Generics + Packages with Generic Clause

library IEEE ;
 use ieee.std_logic_1164.all ;
package ScoreBoardPkg_slv8 is new work.ScoreBoardPkg
 generic map (
 BaseType => std_logic_vector(7 downto 0),
 check => std_match) ;

Specify generics in a package instance to create a new package

SynthWorks

35

Block Comments

/* Remove the following code
if (FP = '1') then
 NextState <= FLASH ;
else
 NextState <= IDLE ;
end if ;
*/

Added "C" block comments: "/*" and "*/"

Recommendation, only use this for temporary edits.

For permanent edits, clarity is more important, so instead,
Use a good editor
Select the region of code
Comment out selected region using "--"

SynthWorks

36

Resulting Operator Overloading
Operator Left Right Result
Logic TypeA TypeA TypeA

Notes:
Array = std_ulogic_vector, std_logic_vector, bit_vector
 unsigned, signed,

TypeA = boolean, std_logic, std_ulogic, Array

For Array and TypeA, arguments must be the same.

Numeric Array Array Array*
Array Integer Array*
Integer Array Array*

Logic, Addition Array Std_ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std_ulogic

* for comparison operators the result is boolean

SynthWorks

37

Std Logic_1164 Updates
A few items that were updated:

std_logic_vector is now subtype of std_ulogic_vector
Uncomment xnor operators
Add logical shift operators for vector types
Add logical reduction operators
Add array/scalar logical operators
Added text I/O read, oread, hread, write, owrite, hwrite

No longer need ieee.std_logic_textio
Std_logic_textio modified to be peacefully co-exist if referenced

SynthWorks

38

Numeric Std Updates
A few items that were updated in numeric_std are:

Array / scalar addition operators
TO_X01, IS_X for unsigned and signed
Logic reduction operators
Array / scalar logic operators
TextIO for numeric_std

Added numeric_std_unsigned package
Replaces std_logic_unsigned
Language modified to allow explicit operators to always overload
implicit ones - even if in a different package
Overloads for std_ulogic_vector/std_logic_vector to have all of the
operators defined for ieee.numeric_std.unsigned
Subprograms (especially conversions and extensions) are consistent
with numeric_std

SynthWorks

39

Next Steps for VHDL

Next Steps, add:
Functional coverage
Constrained random stimulus generation
Verification data structures (FIFOs, scoreboards, memories, …)
Direct C and Verilog/SystemVerilog Calls
Object oriented constructs - extend protected types - have initial proposal

Seeking funding and/or funding model.

Encourage your EDA vendor(s) to support VHDL-2008 and beyond.
Many are well into their implementation - keep encouraging them

Participate in VHDL standards. See: http://www.eda.org/vasg

VHDL community needs the next steps to
Re-use and extend our current testbenches
Keep our design and verification teams using the same language
Use a language with consistent syntax

SynthWorks VHDL Training

Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive_vhdl_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

VHDL Coding for Synthesis 4 Days
 http://www.synthworks.com/vhdl_rtl_synthesis.htm
 Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design

techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

VHDL Testbenches and Verification 5 days - OS-VVM Boot Camp
 http://www.synthworks.com/vhdl_testbench_verification.htm

Learn the latest VHDL verification techniques including transaction-based
testing, bus functional modeling, self-checking, data structures (linked-
lists, scoreboards, memories), directed, algorithmic, constrained random
and coverage driven random testing, and functional coverage.

For additional courses see: http://www.synthworks.com

SynthWorks

SynthWorks is committed to supporting VHDL standards
Support us by buying your training from us.

