Accellera VHDL-2006

By

Jim Lewis, SynthWorks VHDL Training
jim@synthworks.com

MARLUG - Mid-Atlantic Region Local Users Group
ANNUAL CONFERENCE - OCTOBER 12, 2006
Johns Hopkins University Applied Physics Lab — Laurel, MD

SynthWorks

Accellera VHDL-2006

e IEEE VASG - VHDL-200X effort
e Started in 2003 and made good technical progress
e However, no $$$ for LRM editing

e Accellera VHDL TSC
e Took over in 2005,
e Funded the technical editing,
e Users reviewed and prioritized proposals,
e Did super-human work to finalize it for DAC 2006

* Accellera VHDL-2006 Standard 3.0 *
e Approved at DAC 2006 by Accellera board
e Ready for industry adoption

MARLUG October 2006 2 Copyright © SynthWorks 2006

Accellera VHDL-2006

e PSL

e |P Protection via Encryption

e VHDL Procedural Interface - VHPI
e Type Generics

e Generics on Packages

e Arrays with unconstrained arrays
e Records with unconstrained arrays
e Fixed Point Packages

e Floating Point Packages

e Hierarchical references of signals
e Process(all)

e Simplified Case Statements

e Don't Care in a Case Statement

e Conditional Expression Updates

SynthWorks

e Expressions in port maps
e Read out ports

e Conditional and Selected
assignment in sequential code

e hwrite, owrite, ... hread, oread
e to_string, to_hstring, ...

e Sized bit string literals

e Unary Reduction Operators
e Array/Scalar Logic Operators
e Slices in array aggregates

e Stop and Finish

e Context Declarations

e Std_logic_1164 Updates

e Numeric_Std Updates

e Numeric_Std_Unsigned

Many of VHDL's cumbersome syntax issues were fixed

PSL

SynthWorks

e PSL will be incorporated directly into VHDL

e Implications

e PSL Vunit, Vmode, Vprop are a VHDL Design Unit

e PSL declarations (properties) can go in:

e Packages

e Declarative regions of entity, architecture, and block.

e PSL directives (assert, cover, ...) are VHDL statements
e Can be placed in any concurrent statement part.

Note: PSL code will not need to be placed in comments

MARLUG October 2006

4 Copyright © SynthWorks 2006

SynthWorks

IP Protection and Encryption

e A pragma-based approach

e Allows IP authors to mark specific areas of VHDL code for
encryption using standard algorithms.

e The proposal:

e Defines constructs to demarcate protected envelopes in
VHDL source code.

e Defines keywords to specify algorithms and keys.

e Tools that work with encrypted IP must not reveal any details
through any interface or output it generates.

e For example, a synthesis tool should generate an encrypted
netlist for any portion of a design that is encrypted.

MARLUG October 2006 5 Copyright © SynthWorks 2006

SynthWorks

VHDL Procedural Interface - VHPI

e Standardized Procedural Programming Interface to VHDL

e Gives access to information about a VHDL model during
analysis, elaboration, and execution.

e For add-in tools such as linters, profilers, code coverage,
timing and power analyzers, and

e For connecting in external models

e Object-oriented C model.

e Gives direct access as well as callback functions for when
an event occurs.

MARLUG October 2006 6 Copyright © SynthWorks 2006

. . SynthWorks
Formal Generics Types + Generics on Packages

package MuxPkg is
generic(type array type) ;

function Mux4 (
Sel : std logic_vector (1l downto 0);

A : array_ type ;
B : array_ type ;
C : array_ type ;
D : array type

) return array type ;
end MuxPkg ;
package body MuxPkg is

end MuxPkg ;

MARLUG October 2006 7 Copyright © SynthWorks 2006

. . SynthWorks
Formal Generics Types + Generics on Packages

e Making the Mux4 function available for both std_logic_vector
and unsigned.

library ieee ;
package MuxPkg slv is new work.MuxPkg
Generic map (
array type => ieee.std logic 1164.std logic_vector
)

library ieee ;
package MuxPkg unsigned is new work.MuxPkg
Generic map (
array type => ieee.numeric_std.unsigned

)

MARLUG October 2006 8 Copyright © SynthWorks 2006

SynthWorks

Arrays of Unconstrained Arrays

type std_logic _matrix is array (natural range <>)
of std_logic_vector ;

-- constraining in declaration
signal A : std logic_matrix (7 downto 0) (5 downto 0) ;

entity e is
port (
A : std logic matrix (7 downto 0) (5 downto 0) ;

MARLUG October 2006 9 Copyright © SynthWorks 2006

SynthWorks

Records of Unconstrained Arrays

type complex is record
a : std_logic ;
re : signed ;
im : signed ;

end record ;

-- constraining in declaration
signal B : complex (re(7 downto 0), im(7 downto 0)) ;

MARLUG October 2006 10 Copyright © SynthWorks 2006

SynthWorks

Fixed Point Types

e Definitions in package, ieee.fixed pkg.all

type ufixed is array (integer range <>) of std logic;
type sfixed is array (integer range <>) of std logic;

e For downto range, whole number is on the left and includes 0.

constant A : ufixed (3 downto -3) := "0011010000" ;
3210 -3
IIIIFFF
0110100 = 0110.100 = 6.5

e Math is full precision math:

signal A, B : ufixed (3 downto -3) ;
signal Y : ufixed (4 downto -3) ;

Y<=A+ B ;

MARLUG October 2006 11 Copyright © SynthWorks 2006

SynthWorks

Floating Point Types

e Definitions in package, ieee.float_pkg.all
type float is array (integer range <>) of std logic;

e Format is Sign Bit, Exponent, Fraction
signal A, B, Y : float (8 downto -23) ;

8 76543210 12345678901234567890123
S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFE

E = Exponent has a bias of 127

F = Fraction has an implied 1 in leftmost bit

0 10000000 00000000000000000000000 = 2.0

0 10000001 10100000000000000000000 = 6.5

0 01111100 00000000000000000000000 = 0.125 = 1/8
Y <= A + B ; -- FP numbers must be same size

MARLUG October 2006 12 Copyright © SynthWorks 2006

SynthWorks

Hierarchical Reference

e Direct hierarchical reference:

A <= <<signal .top_ent.u compl.my sig : std logic_vector >>;

e Specifies object class (signal, shared variable, constant)
e path (in this case from top level design)
e type (constraint not required)

e Using an alias to create a local short hand:

Alias ul my sig is <<signal ul.my sig : std _logic_vector >>;

e Path in this case refers to component instance u1
(subblock of current block).

e Can also go up from current level of heirarchy using "A"

MARLUG October 2006 13 Copyright © SynthWorks 2006

SynthWorks

Force and Release

e Forcing a port or signal:

A <= force '1l' ;

e For in ports and signals this forces the effective value
e For out and inout ports this forces the driving value

e Forcing the effective value of an out or inout:

A <= force in 'l' ; -- driving value, effects output

e Can also specify "in" with in ports and "out" with out ports,
but this is the default behavior.

e Can force via hierarchical reference.
e Normal driver resolution occurs at levels above force level.

MARLUG October 2006 14 Copyright © SynthWorks 2006

SynthWorks

Force and Release

e Releasing a signal:

A <= release ;

MARLUG October 2006 15 Copyright © SynthWorks 2006

SynthWorks

Process (all)

e Creates a sensitivity list with all signals on sensitivity list

Mux3 proc : process(all)
begin
case MuxSel is
when "00" => Y <= A ;
when "01" => Y <=B ;
when "10" => Y <=C ;
when others => Y <= 'X' ;
end case ;
end process

e Benefit: Reduce mismatches between simulation and synthesis

MARLUG October 2006 16 Copyright © SynthWorks 2006

Simplified Case Statement

e Allow locally static expressions to contain:
e implicitly defined operators that produce composite results

e operators and functions defined in std_logic 1164,
numeric_std, and numeric_unsigned.

SynthWorks

MAR|

constant ONEl

constant CHOICE2

signal A, B

process (A, B)

begin

case A xor B is

when "0000"
when CHOICE2
when "0110"

when ONE1l & "00" =>

when others

end case
end process

.
4

.
r

unsigned := "11" ;

unsigned := "00" & ONEl
unsigned (3 downto 0) ;

> Y <= "00" ;

=> Y <= "01" ;

=> Y <= "10" ;

Y <= "11" ;

=> Y <= "XX" ;

.
r

2006

Simplified Case Statement

SynthWorks

e Although concatenation is specifically allowed, some cases will
still require a type qualifier.

signal A, B, C, D

std_logic ;

process (A, B, C, D)

case std logic_vector' (A & B

begin
when "0000"
when "0011"
when "0110" =
when "1100" =

when others =

end case
end process

.
’

.
14

Y

K KKK

<=

"00"

— "01"

"10"
"11"

- "XX"

& C & D) is

.
14

MARLUG October 2006

18

Copyright © SynthWorks 2006

SynthWorks

Case With Don't Care

e Allow use of '-' in targets provided targets are non-overlapping

-- Priority Encoder
process (Request)

begin
case? Request is
when "1---" => Grant <= "1000" ;
when "01--" => Grant <= "0100" ;

when "001-" => Grant <= "0010" ;
when "0001" => Grant <= "0001" ;
when others => Grant <= "0000" ;
end case ;
end process ;

Note: Only '-'in the case target is treated as a don't care.
"' in the case? Expression will not be treated as a don't care.

MARLUG October 2006 19 Copyright © SynthWorks 2006

SynthWorks

Simplified Conditional Expressions

e Current VHDL syntax:

if (Csl='1l' and nCs2='0"' and Addr=X"A5") then
if nWe = '0' then

e New: Allow top level of condition to be std _ulogic or bit:

if (Csl and not nCs2 and Cs3) then
if (not nWe) then

e Create special comparison operators that return std_ulogic
(?=, ?2/=, 7>, 7>=, ?7<, 7<=)

if (Csl and not nCs2 and Addr?=X"A5") then
DevSell <= Csl and not nCs2 and Addr?=X"A5" ;

e Does not mask 'X'

MARLUG October 2006 20 Copyright © SynthWorks 2006

SynthWorks

Hwrite, Hread, Owrite, Oread

e Support Hex and Octal read & write for all bit based array types

procedure hwrite (

Buf : inout Line ;
VALUE : in bit_vector ;
JUSTIFIED : in SIDE := RIGHT;
FIELD : in WIDTH := 0

)

procedure hread (

Buf : inout Line ;
VALUE : out bit vector ;
Good : out boolean

)

procedure oread (. . .) ;

procedure owrite (. . .)

e No new packages. Supported in base package
e For backward compatibility, std_logic_textio will be empty

MARLUG October 2006 21 Copyright © SynthWorks 2006

SynthWorks

To String, To HString, To OString

e Create to_string for all types.
e Create hex and octal functions for all bit based array types

function to_string (
VALUE : in std logic_vector;
) return string ;

function to_hstring (. . .) return string ;

function to_ostring (. . .) return string ;

e Formatting Output with Write (not write from TextlO):

write (Output, "%%%ERROR data value miscompare." &

LF & " Actual value = " & to hstring (Data) &
LF & " Expected value = " & to_hstring (ExpData) &
LF & " at time: " & to_string (now, right, 12)) ;

MARLUG October 2006 22 Copyright © SynthWorks 2006

SynthWorks

Sized Bit String Literals

e Currently hex bit string literals are a multiple of 4 in size
X"AA" = "10101010"

e Allow specification of size (and decimal bit string literals):

7X"7F" = "1111111"
7D"127" = "1111111"

e Allow specification of signed vs unsigned (extension of value):

9UX"F" = "000001111" Unsigned 0 fill
9sX"F" = "111111111" Signed: left bit = sign
OX"F" = "000001111" Defaults to unsigned

e Allow Replication of X and Z

TX"XX" = "TXXXXXXX"
TX"22" = "ZZZZZZZ"
MARLUG October 2006 23 Copyright © SynthWorks 2006

SynthWorks

Signal Expressions in Port Maps

U_UUT . UUT
port map (A, Y and C, B) ;

e Needed to avoid extra signal assignments with OVL

e If expression is not a single signal, constant, or does not
qualify as a conversion function, then

e convert it to an equivalent concurrent signal assignment
e and it will incur a delta cycle delay

MARLUG October 2006 24 Copyright © SynthWorks 2006

SynthWorks

Read Output Ports

e Read output ports
e Value read will be locally driven value

e Assertions need to be able to read output ports

MARLUG October 2006 25 Copyright © SynthWorks 2006

SynthWorks

Allow Conditional Assignments for
Signals and Variables in Sequential Code

e Statemachine code:
if (FP = '1l') then
NextState <= FLASH ;
else
NextState <= IDLE ;
end if ;

e Simplification (new part is that this is in a process):

NextState <= FLASH when (FP = 'l') else IDLE ;

e Also support conditional variable assignment:

NextState := FLASH when (FP = 'l') else IDLE ;

MARLUG October 2006 26 Copyright © SynthWorks 2006

SynthWorks

Allow Selected Assignments for
Signals and Variables in Sequential Code

signal A, B, C, D, Y : std logic ;
signal MuxSel : std logic_vector(l downto 0) ;

Process (clk)

begin
wait until Clk = '1' ;
with MuxSel select

Mux :=
A when "00",
B when "O01",
C when "10",
D when "11",

'X' when others ;

Yreg <= nReset and Mux ;

end process ;
MARLUG October 2006 Z/ Copyright © SynthWorks 2006

SynthWorks

Unary Reduction Operators

e Define unary AND, OR, XOR, NAND, NOR, XNOR

function "and" anonymous: BIT VECTOR) return BIT;
function "or" anonymous: BIT VECTOR) return BIT;
function "nand" anonymous: BIT VECTOR) return BIT;
function "nor" anonymous: BIT VECTOR) return BIT;
function "xor" anonymous: BIT VECTOR) return BIT;
function "xnor" anonymous: BIT VECTOR) return BIT;

(
(
(
(
(
(

e Calculating Parity with reduction operators:

Parity <= xor Data ;

e Calculating Parity without reduction operators:

Parity <= Data(7) xor Data(6) xor Data(5) xor
Data(4) xor Data(3) xor Data(2) =xor
Data(l) xor Data(0) ;

MARLUG October 2006 28 Copyright © SynthWorks 2006

SynthWorks

Array / Scalar Logic Operators

e Overload logic operators to allow:

signal ASel : std logic ;
signal T, A : std logic_vector (3 downto 0) ;

T <= (A and ASel) ;

A©) _>— T(0) The value of ASel will replicated to
[form an array.
A e._:>— T(1) When ASel ='0'", value expands to "0000"
When ASel ='1', value expands to "1111"

o 11 -
T(3)
ASel

MARLUG October 2006 29 Copyright © SynthWorks 2006

SynthWorks

Array / Scalar Logic Operators

e A common application is to data read back logic

signal Sell, Sel2, Sel3, Sel4 : std logic ;
signal DO, Regl, Reg2, Reg3, Reg4
std logic_vector (3 downto 0) ;

DO <= (Regl and Sell) or (Reg2 and Sell) or
(Sel3 and Reg3) or (Sel4 and Reg4) ;

MARLUG October 2006 30 Copyright © SynthWorks 2006

SynthWorks

Slices in Array Aggregates

e Allow slices in an Array Aggregate

Signal A, B, Y : unsigned (7 downto 0) ;
signal CarryOut : std_logic ;

(CarryOut, ¥) <= ('0' & A) + ('0' & B) ;

e Currently, this would have to be written as:

(CarryOut, ¥ (7) ,¥(6) ,Y(5),¥(4),¥(3),¥(2),¥Y(1),¥(0))
<= ('0' & A) + ('0' & B) ;

MARLUG October 2006 31 Copyright © SynthWorks 2006

SynthWorks

Stop and Finish

e STOP - Stop like breakpoint
e FINISH - Stop and not able to continue

e Defined in package ENV in library STD

package ENV is
procedure STOP (STATUS: INTEGER);
procedure FINISH (STATUS: INTEGER);

end package ENV;

e Usage:

use std.env.all ;
TestProc : process begin
Stop (0) ;
end process TestProc ;

MARLUG October 2006 32 Copyright © SynthWorks 2006

ynthWorks

Context Declaration = Primary Design Unit °

e Allows a group of packages to be referenced by a single name

Context projectl Ctx is

library ieee, YYY math 1lib ;

use std.textio.all ;

use ieee.std logic 1164.all;

use ieee.numeric std.all ;

use YYY math 1lib.ZZZ fixed pkg.all ;
end ;

e Reference the named context unit

Library Lib_Pl ;
context Lib Pl.projectl ctx ;

e Benefit increases as additional standard packages are created
e Fixed Point, Floating Point, Assertion Libraries, . ..

MARLUG October 2006 33 Copyright © SynthWorks 2006

SynthWorks

Std Logic 1164 Updates

e Goals: Enhance current std_logic 1164 package

e A few items on the list are:
e std_logic vector is now subtype of std_ulogic_vector
e Uncomment xnor operators
e Add shift operators for vector types
e Add logical reduction operators
e Add array/scalar logical operators
e Added text I/O read, oread, hread, write, owrite, hwrite

MARLUG October 2006 34 Copyright © SynthWorks 2006

. SynthWorks
Numeric Std Updates
e Goals:
e Enhance current numeric_std package.
e Unsigned math with std_logic_vector/std_ulogic_vector

e A few items on the numeric_std list are:
e Array / scalar addition operators
e TO _XO01, IS_X for unsigned and signed
e Logic reduction operators
e Array / scalar logic operators
e TextlO for numeric_std

MARLUG October 2006 35 Copyright © SynthWorks 2006

SynthWorks

Numeric Std Unsigned

e Overloads for std_ulogic_vector to have all of the operators
defined for ieee.numeric_std.unsigned

e Replacement for std_logic_unsigned that is consistent with
numeric_std

MARLUG October 2006 36 Copyright © SynthWorks 2006

SynthWorks

Resulting Operator Overloading

Operator Left Right Result

Logic TypeA TypeA TypeA

Numeric Array Array Array¥*
Array Integer Array¥*
Integer Array Array*

Logic, Addition Array Std ulogic Array
Std_ulogic Array Array

Logic Reduction Array Std _ulogic

Notes:

Array = std ulogic _vector, std logic_vector, bit_vector

unsigned, signed,

TypeA = boolean, std logic, std ulogic, Array

For Array and TypeA, arguments must be the same.

* for comparison operators the result is boolean

MARLUG October 2006 37 Copyright © SynthWorks 2006

SynthWorks

VHDL Standards Next Steps

e Constrained Random Stimulus Generation

e Random value generation with dynamic weighting
e Randomly generate sequences of stimulus
e Functional Coverage

e Interfaces
e Verification Data Structures:
e associative arrays, queues, FIFOs, and memories
e Direct C and Verilog/SystemVerilog Calls
e Object Orientation

e Goal = HDVL: Hardware Description and Verification Language
e Full verification capabilities in one consistent language

MARLUG October 2006 38 Copyright © SynthWorks 2006

ynthWorks

Accellera VHDL-2006 3.0: Summary)

Accellera VHDL-2006 3.0 is done and ready for adoption

e Tell your vendors about features you want supported.
e Be specific and prioritize your requests

e Help us with the next revision ...

e Participate! Don't sit on the bench and wait and watch.
e See http://www.accellera.org/activities/vhdl/

e Ask your colleagues and vendors to participate

e Join Accellera and help fund the effort
e Corporate membership

MARLUG October 2006 39 Copyright © SynthWorks 2006

SynthWorks

SynthWorks & VHDL Standards

e At SynthWorks, we are committed to see that VHDL is
updated to incorporate the good features/concepts from other
HDL/HVL languages such as SystemVerilog, E (specman),
and Vera.

e At SynthWorks, we invest 100's of hours each year working
on VHDL's standards

e Support VHDL's standards efforts by:

e Encouraging your EDA vendor(s) to support VHDL
standards,

e Participating in VHDL standards working groups, and / or
e Purchasing your VHDL training from SynthWorks

SynthWorks

SynthWorks VHDL Training

Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive vhdl introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

VHDL Testbenches and Verification 3 days
http://www.synthworks.com/vhdl testbench verification.htm
Learn to simplify writing tests by creating transaction-based testbenches.

Intermediate VHDL Coding for Synthesis 2 Days
http://www.synthworks.com/intermediate vhdl synthesis.htm
Learn RTL (hardware) coding styles that produce better, faster, and
smaller logic.

Advanced VHDL Coding for Synthesis 2 Days
http://www.synthworks.com/advanced vhdl synthesis.htm
Learn to avoid RTL coding issues, problem solving techniques, and
advanced VHDL constructs.

For additional courses see: http://www.synthworks.com

