
DVCon 2004 1 © Copyright SynthWorks Design Inc 2004. All Rights Reserved

IEEE-1076.6-200X:
VHDL Synthesis Coding

Styles for the Future

by

Jim Lewis, SynthWorks

Jim@SynthWorks.com

SynthWorks

DVCon 2004 2 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Author Biography
Jim Lewis, Director of Training, SynthWorks Design Inc.

Jim Lewis, the founder of SynthWorks, has seventeen years of
design, teaching, and problem solving experience. In addition to
working as a Principal Trainer for SynthWorks, Mr. Lewis does
ASIC and FPGA design, custom model development, and
consulting. Mr. Lewis is an active member of VHDL Standards
groups including, VHDL (IEEE 1076), RTL Synthesis (IEEE
1076.6), Std_Logic (IEEE 1164), and Numeric_Std (IEEE
1076.3).

The author can be reached at jim@synthworks.com or
(503) 590-4787

SynthWorks

DVCon 2004 3 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

The Problem:
● HDLs = vendor independent simulation, however,

HDLs /= vendor independent synthesis implementation

IEEE 1076.6 = the VHDL solution

✦ Compliant synthesis tool + Compliant IP (purchased) =
Vendor independent code = No Synthesis problems

● IEEE 1076.6 specifies:
● Synthesis coding styles that compliant EDA vendors are

required to implement
● Synthesis coding styles that compliant IP/Model

developers must use to achieve portability

SynthWorks

DVCon 2004 4 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

IEEE 1076.6-200X, Goals
● Goals: Simplify and Enhance VHDL synthesis coding capability

● First standardized in 1999, P1076.6-200X brings you:
● Broader register coding styles

● Multiple edges, subprograms, concurrent assignments
● Potentially better simulation efficiency

● RAM & ROM Models
● Attributes (Statemachine Control)

● Status:
● Ballot 1 passed
● Resolving issues and currently re-balloting

✦ Website: http://www.eda.org/siwg

http://www.eda.org/siwg

SynthWorks

DVCon 2004 5 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Register Enhancements
● Replace limited set of templates with a simplified rule

(algorithm) based method.

● Abstracted rules:
● A signal or variable stores a value under the direct control

of a clock edge,
● Asynchronous conditions always have priority over

synchronous conditions (matches hardware),
● Sensitivity list (if required) must have clock and any

asynchronous control signals (not required for wait)

✦ These rules subsume the templates from IEEE 1076.6-1999

SynthWorks

DVCon 2004 6 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

If and Synchronous Conditions

LoadEnRegProc : process (Clk)
begin
 if LoadEn='1' and rising_edge(Clk) then
 Q <= D ;
 end if;
end process ;

● Synchronous conditions can be coded with clock

✦ Benefit: Code more compact and simulation efficient

SynthWorks

DVCon 2004 7 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Wait and Synchronous Conditions

LoadEnReg1Proc : process
begin
 wait on Clk until LoadEn='1' and Clk='1' ;
 Q <= D ;
end process ; -- LoadEnReg1Proc

● Synchronous conditions can be coded with clock

✦ Benefit: Code more compact and simulation efficient

wait on Clk until LoadEn='1' and rising_edge(Clk) ;

wait until LoadEn='1' and rising_edge(Clk) ;

● Alternate similar clock edge forms to the above:

SynthWorks

DVCon 2004 8 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Problematic Asynchronous Reset

✦ When coded as above, Q2 produces the following logic:

TwoReg1Proc : process(Clk, nReset)
begin
 if nReset = '0' then
 Q1 <= '0' ;
 elsif rising_edge(Clk) then
 Q1 <= D1 ;
 Q2 <= D2 ;
 end if ;
end process ; -- TwoReg1Proc

i0

i1
o

sel
D2

nReset
Clk

Q2D Q

Clk

SynthWorks

DVCon 2004 9 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Asynchronous Reset

TwoReg2Proc : process(Clk, nReset)
begin
 if rising_edge(Clk) then
 Q1 <= D1 ;
 Q2 <= D2 ;
 end if ;

 if nReset = '0' then -- no reset on Q2
 Q1 <= '0' ;
 end if ;
end process ; -- TwoReg2Proc

● Asynchronous reset can be coded separately from clock:

✦ Benefit:
✦ Allows registers with and without reset to be correctly

coded in same process.

SynthWorks

DVCon 2004 10 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Concurrent Assignments

Q <= D when rising_edge(Clk) ;

Q <=
 '0' when nReset = '0' else
 D when LoadEn = '1' and rising_edge(Clk);

Q <= D when Gate = '1' ;

● Register and Latch creation with concurrent assignments

✦ Benefit: Greatly simplified coding style

Register

Register w/
Async Reset

Latch

Registers & Latches in Subprograms
package RegPkg is
 procedure DFF(
 signal Clk : in Std_Logic ;
 D : in Std_Logic ;
 signal Q : out Std_Logic
) ;
 procedure DFFR(. . .);
 procedure DFFLE(. . .);
 procedure Latch(. . .);
 . . .
end package RegPkg;
package body RegPkg is
 procedure DFF(. . .) is
 begin
 if rising_edge(Clk) then
 Q <= D;
 end if;
 end DFF;
 . . .
end package RegPkg ;

-- Create Registers & Latches
-- with procedure calls
-- Three Registers
DFFR(Clk, nRst, D, Reg1) ;
DFFR(Clk, nRst, Reg1, Reg2) ;
DFFR(Clk, nRst, Reg3, Q) ;

-- Latch
latch(Sel, A, Y);

DVCon 2004 11 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

SynthWorks

DVCon 2004 12 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Multiple Edge Registers
DualEdgeFF : process(nReset, Clk1, Clk2)
begin
 if (nReset = '0') then
 Q <= '0' ;

 elsif rising_edge(Clk1) then -- Functional Clock
 Q <= D ;

 elsif rising_edge(Clk2) then -- Scan Clock
 Q <= SD ;
 end if ;

 -- RTL_SYNTHESIS OFF
 if rising_edge(Clk1) and rising_edge(Clk2) then
 report "Warning: . . ." severity warning ;
 Q <= 'X' ;
 end if ;
 -- RTL_SYNTHESIS ON
end process;

SynthWorks

DVCon 2004 13 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Register Using Both Edges of Clk
DualEdge_Proc: process (Clk, Reset) is
begin
 if Reset = '1' then
 Q <= (others => '0');

 elsif rising_edge(Clk) then
 Q <= D4Rise;

 elsif falling_edge(Clk) then
 Q <= D4Fall;

 end if;
end process DualEdge_Proc;

SynthWorks

DVCon 2004 14 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

RAM Entity
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.rtl_attributes.all;

entity RAM is
 generic (
 WIDTH : Natural := 8 ;
 DEPTH : Natural := 16
);
 port (
 a : in std_logic_vector(DEPTH-1 downto 0) ;
 we : in std_logic ;
 d : in std_logic_vector(WIDTH-1 downto 0) ;
 q : out std_logic_vector(WIDTH-1 downto 0)
);
end entity RAM ; VHDL Generics make the RAM

Address & Data parameterizable

RAMArchitecture register of RAM is
begin
 Ram_Proc: process (a, d, we) is
 type ram_type is array(0 to 2**DEPTH – 1) of
 std_logic_vector(WIDTH-1 downto 0);
 variable ram : ram_type;
 begin

wait until clk = '1' ;
 if we = '1' then -- write RAM
 ram(to_integer(unsigned(a)) := d ;
 end if;
 q <= ram(to_integer(unsigned(a)) ; -- read RAM
 end process Ram_Proc;
end architecture register ;

● With ram_block attribute, creates a RAM with registered IO:
attribute ram_block of ram : signal is "";

attribute logic_block of ram : signal is "TRUE";

● With logic_block attribute, creates a registers:

✦ Without either, synthesis tool's choice 15

RAM

attribute logic_block of ram : signal is "TRUE";

Architecture latch of RAM is
begin
 Ram_Proc: process (a, d, we) is
 type ram_type is array(0 to 2**DEPTH – 1) of
 std_logic_vector(WIDTH-1 downto 0);
 variable ram : ram_type ;
 begin
 if we = '1' then -- write RAM
 ram(to_integer(unsigned(a)) := d ;
 end if;
 q <= ram(to_integer(unsigned(a)) ; -- read RAM
 end process Ram_Proc;
end architecture latch;

● With ram_block attribute, creates a RAM:
attribute ram_block of ram : signal is "";

● With logic_block attribute, creates a latches:

✦ Without either, synthesis tool's choice 16

SynthWorks

DVCon 2004 17 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

ROMarchitecture RTL_CASE of ROM is
 attribute rom_block of Z : signal is "ROM32Kx16";
begin
 Rom_Proc : process (A) is
 begin

 case A is
 when "000" => Z <= "1011" ;
 when "001" => Z <= "0001" ;
 when "100" => Z <= "0011" ;
 when "110" => Z <= "0010" ;
 when "111" => Z <= "1110" ;
 when others => Z <= "0000" ;
 end case;

 end process Rom_Proc;
end architecture RTL_CASE ;

attribute logic_block of Z : signal is "TRUE";

✦ With logic_block attribute, creates combinational logic:

SynthWorks

DVCon 2004 18 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

ROM
architecture RTL2 of ROM is
 type rom_type is array(0 to 7) of
 std_logic_vector(3 downto 0);

 constant ROMINIT : rom_type := (
 0 => "1011", 1 => "0001",
 2 => "0011", 3 => "0010",
 4 => "1110", others => "0000"
);

 attribute rom_block of ROMINIT : constant is
 "ROM_CELL_XYZ01";
begin

 Z <= ROMINIT(to_integer(unsigned(A)));

end architecture RTL2;

SynthWorks

DVCon 2004 19 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Statemachines
type StateType is (S0, S1, S2, S3, S4);
signal state : StateType;
. . .
StateProc : process
begin
 wait until Clk = '1' ;
 if nReset = '0' then
 state <= S0
 else
 case state is
 when S0 => state <= S1;
 when S1 => state <= S2;
 when S2 => state <= S3;
 when S3 => state <= S4;
 when S4 => state <= S0;
 when others => state <= S0;
 end case;
 end if ;
end process;

What if anything is specified
for states S5, S6, and S7?

Logically these states don't
exist, so nothing is implied

SynthWorks

DVCon 2004 20 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Safe Statemachines

attribute FSM_COMPLETE of state : signal is TRUE;

✦ Note: When FSM_COMPLETE attribute is true, it is
an error if the statemachine has any unreachable
states.

● Setting the FSM_COMPLETE attribute to true requires a
synthesis tool to use the transitions specified by the
VHDL default assignment to specify transitions for
unused states in the implementation.

What if anything is specified for states S5, S6, and S7?

Transition to S0 as specified by the others statement.

SynthWorks

DVCon 2004 21 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Specifying State Values
● The FSM_STATE attribute permits specification of a state

encoding style such as binary, gray, one_hot, one_cold, or
AUTO:
attribute FSM_STATE of state : signal is "BINARY" ;

attribute FSM_STATE of state : signal is
 "0000 0011 0110 1100 1001" ;

● The FSM_STATE attribute also permits specification of a state
encoding enumeration value:

✦ The above example gives the encoding a hamming distance
of two which is good for safe statemachine environments.
It was perhaps an oversight that state encodings for
HAMMING2 and HAMMING3 were left out.

SynthWorks

DVCon 2004 22 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Preserving Logic Terms
● Required Circuit:

C

B

C

A

A

B

Z

● Code
Z <=
 (A and C) or
 (A and B) or
 (B and not C) ;

● What happened?
● The term AB is reducible

and was removed by the
synthesis tool.

● Resulting Circuit:

C

C

A

B
Z

✦ Is it necessary to keep AB?
✦ For asynchronous logic,

the AB term prevents
glitches

SynthWorks

DVCon 2004 23 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Preserving Logic Terms

signal AC, AB, BC : signal;
. . .
AC <= A and C ;
AB <= A and B ;
BC <= B and not C ;

Z <= AC or AB or BC ;

C

B

C

A

A

B

Z
AB

AC

BC

● Step 1: Create Intermediate signals

✦ Step 2: Apply the keep attribute to a AC, AB, BC to
preserve them through synthesis. This is equivalent to
inserting a non-movable buffer on the signal.

attribute KEEP of AC, AB, BC : signal is TRUE;

SynthWorks

DVCon 2004 24 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Preserving Logic Terms

InterBlk : block
begin
 AC <= A and C ;
 AB <= A and B ;
 BC <= B and not C ;
end block ;

Z <= AC or AB or BC ;

● Step 1: Create Hierarchy Using VHDL Block Statement

InterBlk

C

B

C

A

A

B

Z
AB

AC

BC

✦ Step 2: Apply the CREATE_HIERARCHY attribute to the
block statement label to preserve it through synthesis.

attribute CREATE_HIERARCHY of InterBlk : label is TRUE;

SynthWorks

DVCon 2004 25 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Resolution of Problems:
● Combinational Logic and Incomplete Sensitivity Lists:

✦ Resolution:
Synthesis tool should produce an error and not produce
any results

StrangeLatProc : process (A) -- missing B
begin
 C <= A and B ;
end process ;

SynthWorks

DVCon 2004 26 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Resolution of Problems:
● Is the following a register or a latch?

✦ Resolution:
Synthesis tool should produce an error and not produce
any results

Reg_or_Latch_Proc: process (Clk)
begin
 if (Clk = '1') then -- no clock edge
 Q <= D ;
 end if ;
end process ;

● Cannot be a latch since it has an incomplete sensitivity list
● Cannot be a register since it has no clock edge specification

SynthWorks

DVCon 2004 27 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Resolution of Problems:

ALat : process (ENABLE, D, Q)
begin
 if ENABLE = '1' then
 Q <= D;
 else
 Q <= Q ;
 end if;
end process; -- ALat

i0

i1
o

sel
D

Enable

Q

● Problematic Latch Coding Style:
Either creates a latch or:

● Resolution: By default it should create a latch

attribute COMBINATIONAL of ALat: process is TRUE;

✦ If combinational logic is needed use the attribute:

SynthWorks

DVCon 2004 28 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

Vendor Support of Standards
● Business view of supporting EDA standards

● Supporting a feature of a standard is an investment
● Feature support is market driven

● If you don't ask, they don't support it.

✦ If you see new features you want to use,
tell your EDA vendor

SynthWorks

DVCon 2004 29 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

On-Going VHDL Projects
● Significant enhancements are currently being made to VHDL.

● This paper summarizes the efforts being made by the following
IEEE working groups:

Agenda Website
VHDL-200X http://www.eda.org/vhdl-200x
IEEE 1164 http://www.eda.org/vhdl-std-logic
IEEE 1076.3/numeric std http://www.eda.org/vhdlsynth
IEEE 1076.3/floating point http://www.eda.org/fphdl
IEEE 1076.6 http://www.eda.org/siwg
VHDL-200X Fast Track

 http://www.eda.org/vhdl-200x/vhdl-200x-ft

Caution: All activities here are work in progress.

SynthWorks

DVCon 2004 30 Copyright © 2004 SynthWorks Design Inc. All Rights Reserved.

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days
http://www.synthworks.com/comprehensive_vhdl_introduction.htm

A design and verification engineers introduction to VHDL syntax,
RTL coding, and testbenches.
Our designer focus ensures that your engineers will be productive
in a VHDL design environment.

VHDL Coding Styles for Synthesis 4 Days
 http://www.synthworks.com/vhdl_rtl_synthesis.htm
 Engineers learn RTL (hardware) coding styles that
 produce better, faster, and smaller logic.

VHDL Testbenches and Verification 3 days
 http://www.synthworks.com/vhdl_testbench_verification.htm
 Engineers learn how create a transaction-based
 verification environment based on bus functional models.

For additional courses see: http://www.synthworks.com

http://www.eda.org/vhdl-200x
http://www.eda.org/vhdl-std-logic
http://www.eda.org/vhdlsynth
http://www.eda.org/fphdl
http://www.eda.org/siwg
http://www.eda.org/vhdl-200x/vhdl-200x-ft
http://www.synthworks.com/comprehensive_vhdl_introduction.htm
http://www.synthworks.com/vhdl_rtl_synthesis.htm
http://www.synthworks.com/vhdl_testbench_verification.htm
http://www.synthworks.com

